64 research outputs found

    Retrospective case control study of pet ferrets with cystine urolithiasis in Quebec, Canada : epidemiological and clinical features

    Full text link
    Objective: To describe epidemiological and clinical features of cystine urolithiasis in pet ferrets. Methods: Retrospective case control study on medical records from four private clinics and one teaching hospital for pet ferrets diagnosed with cystine urolithiasis confirmed by spectrophotometry presented between July 2014 and July 2019 in Quebec, Canada; these cases were then compared to a reference population of 210 ferrets (controls) presented at the same facilities over the same timeframe. Results: Among the 36 identified cases, most affected ferrets were neutered males (32/36, 89%) and the mean age at presentation was 1.8 (± 1.0 standard deviation) year. Grain-free diets of six different brands were offered for at least three weeks prior to the presentation to 34/36 (94%) of the included cases. The ferrets that developed cystine urolithiasis were 57.9 times (Odds ratio [OR], 95% Confidence interval [95% CI]: 11.0, 304.8) more likely to receive a grain-free diet compared to the reference population. No significant difference in the values for the energy, protein, cysteine, and methionine contents were detected between the grainfree and the cereal-based diets offered to these pet ferrets. Among ferrets with uroliths, those with urethral calculi were 4.7 times (OR, 95% CI: 2.1, 10.4) more likely to develop an acute urinary tract obstruction. Conclusion: Although a definitive causation could not be drawn solely from these clinical cases, this case control study highlights a possible nutritional aetiology in the complex pathogenesis of cystine urolithiasis in ferrets

    REAR SEAT SAFETY IN FRONTAL TO SIDE IMPACTS – FOCUSING ON OCCUPANTS FROM 3YRS TO SMALL ADULTS

    Get PDF
    ABSTRACT This study presents a broad comprehensive research effort that combines expertise from industry and academia and uses various methodologies with applied research directed towards countermeasures. The project includes real world crash data analysis, real world driving studies and crash testing and simulations, aiming at enhancing the safety of forward facing child occupants (aged 3y to small adults) in the rear seat during frontal to side impacts. The real world crash data analyses of properly restrained children originate from European as well as US data. Frontal and side impact crash tests are analyzed using different sizes of crash test dummies in different sitting postures. Side impact parameter studies using FE-models are run. The sitting posture and behavior of 12 children are monitored while riding in the rear seat. Also, the body kinematics and belt position during actual braking and turning maneuvers are studied for 16 rear seat child occupants and for various child dummies. Real world crash data indicates that several of the injured children in frontal impacts, despite being properly restrained, impacted the vehicle interior structure with their head/face resulting in serious injury. This was attributed to oblique crashes, pre-crash vehicle maneuvers or high crash severity. Crash tests confirm the importance of proper initial belt-fit for best protection. The crash tests also highlight the difficulty in obtaining the real world kinematics and head impact locations using existing crashtest dummies and test procedures. The side impact parameter studies indicate that the vehicle’s occupant protection systems, such as airbags and seat belt pretensioners, play an important role in protecting children as well. The results from the on-road driving studies illustrate the variation of sitting postures during riding in the rear seat giving valuable input to the effects of the restraint systems and to how representative the standardized dummy seating positioning procedures are. The results from the maneuver driving studies illustrate the importance of understanding the kinematics of a child relative to the seat belt in a real world maneuver situation. Real world safety of rear seat occupants, especially children, involves evaluation of protection beyond standard crash testing scenarios in frontal and side impact conditions. This project explores the complete context of rear seat protection in impact situations ranging from front to side and directions in between highlighting the importance of pre-crash posture and behavior. This research project at SAFER (Vehicle and Traffic Safety Centre at Chalmers), where researchers from the industry and universities cooperate with the aim to further improve safety for children (from 3y) to small adults in the rear seat, speeds up the process to safety implementation due to the interaction between academic and industrial researchers

    Safety of children in cars: A review of biomechanical aspects and human body models

    Get PDF
    The protection of children in motor vehicle crashes has improved since the introduction of child restraint systems. However, motor vehicle crashes remain one of the top leading causes of death for children. Today, computer-aided engineering is an essential part of vehicle development and it is anticipated that safety assessments will increasingly rely on simulations. Therefore, this study presents a review of important biomechanical aspects for the safety of children in cars, including child human body models, for scenarios ranging from on-road driving, emergency maneuvers, and pre-crash events to crash loading. The review is divided into four parts: Crash safety, On-road driving for forward facing children, Numerical whole body models, and Discussion and future outlook.The first two parts provide ample references and a state-of-the-art description of important biomechanical aspects for the safety of children in cars. That children are not small adults has been known for decades and has been considered during the development of current restraints that protect the child in the crash phase. The head, neck, thorax, and pelvis are body areas where development with age changes the biomechanics and the interaction with restraint systems. The rear facing child seat distributes the crash load over a large area of the body and has proved to be a very efficient means of reducing child injuries and fatalities. Children up to age 4. years need to be seated rearward facing for optimal protection, mainly because of the proportionally large head, neck anthropometry and cartilaginous pelvis. Children aged 4 up to 12. years should use a belt positioning booster together with the vehicle seat belt to ensure good protection, as the pelvis is not fully developed and because of the smaller size of these children compared to adults. On-road driving studies have illustrated that children frequently change seated posture and may choose slouched positions that are poor for lap belt interaction if seated directly on the rear seat. Emergency maneuvers with volunteers illustrate that pre-crash loading forces forward-facing children into involuntary postures with large head displacements, having potential influence on the risk of head impact. Children, similar to adults, benefit from the safety systems offered in the vehicle. By providing child adaptability of the vehicle, such as integrated booster cushions, the child-restraint interaction can be further optimized. An example of this is the significant reduction of lap belt misuse when using integrated boosters, due to the simplified and natural positioning of the lap belt in close contact with the pelvis. The research presented in this review illustrates that there is a need for enhanced tools, such as child human body models, to take into account the requirements of children of different ages and sizes in the development of countermeasures.To study how children interact with restraints during on-road driving and during pre- and in-crash events, numerical child models implementing age-specific anthropometric features will be essential. The review of human whole body models covers multi body models (age 1.5 to 15. years) and finite element models (ages 3, 6, and 10. years). All reviewed child models are developed for crash scenarios. The only finite element models to implement age dependent anthropometry details for the spine and pelvis were a 3. year-old model and an upcoming 10. year-old model. One ongoing project is implementing active muscles response in a 6. year-old multi body model to study pre-crash scenarios. These active models are suitable for the next important step in providing the automotive industry with adequate tools for development and assessment of future restraint systems in the full sequence of events from pre- to in-crash. Document type: Articl

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Spectropolarimetry of high-redshift obscured and red quasars

    Get PDF
    Spectropolarimetry is a powerful technique that has provided critical support for the geometric unification model of local active galactic nuclei. In this paper, we present optical (rest-frame UV) Keck spectropolarimetry of five luminous obscured (Type 2) and extremely red quasars (ERQs) at z~2.5. Three objects reach polarization fractions of >10% in the continuum. We propose a model in which dust scattering is the dominant scattering and polarization mechanism in our targets, though electron scattering cannot be completely excluded. Emission lines are polarized at a lower level than is the continuum. This suggests that the emission-line region exists on similar spatial scales as the scattering region. In three objects we detect an intriguing 90 degree swing in the polarization position angle as a function of line-of-sight velocity in the emission lines of Ly-alpha, CIV and NV. We interpret this phenomenon in the framework of a geometric model with an equatorial dusty scattering region in which the material is outflowing at several thousand km/sec. Emission lines may also be scattered by dust or resonantly. This model explains several salient features of observations by scattering on scales of a few tens of pc. Our observations provide a tantalizing view of the inner region geometry and kinematics of high-redshift obscured and extremely red quasars. Our data and modeling lend strong support for toroidal obscuration and powerful outflows on the scales of the UV emission-line region, in addition to the larger scale outflows inferred previously from the optical emission-line kinematics.Comment: 26 pages, MNRAS, in pres

    Safety for Children in Cars – Focus on Three Point Seatbelts in Emergency Events

    No full text
    Child safety in vehicles has improved over time. One of the main factors is due to the increased restraint use by children. Nevertheless, studies show that although children are restrained, injuries still occur indicating that restraint systems have the potential for further improvement. This thesis focuses on emergency events that may precede a crash, and how these events influence the kinematics of child occupants restrained by a three point seatbelt. Real world data was analyzed and the results identified that a substantial portion of drivers attempted an avoidance maneuver prior to crash. Volunteer tests were carried out to investigate children’s motion during emergency braking and steering maneuvers in a passenger vehicle, and the current child crash test dummies were evaluated with respect to child occupants. In addition, a countermeasure was evaluated by activating an electrical reversible seatbelt retractor (pre-pretensioner) prior to run-off road events with child crash test dummies.The results of the volunteer tests emphasize the need for considering large areas of the vehicle’s interior as part of potential head impact surface. Maximum forward excursion is influenced by initial shoulder belt position and type of booster used in the braking events. A steering maneuver is an unstable restraint situation for children in the rear seat and a great variety in lateral displacement and seatbelt position on the shoulder were seen in different restraint configurations. Influencing factors include child age, anthropometry, initial seated posture and initial shoulder belt position on the shoulder. This thesis confirms that children can be exposed to sub-optimal postures due to emergency events. It provides evidence that a pre-pretensioner has considerable potential in maintaining different sizes of rear-seated occupants well restrained.The braking and steering maneuvers with child volunteers carried out in this thesis provide novel and unique knowledge of possible pre-crash postures of children across a variety of restraint systems in vehicle emergency maneuvers. Test tools are needed to better replicate the real world seated postures and injury causation scenarios. This thesis evaluated the available physical child test tools in low acceleration conditions when exposed to emergency events and highlighted the limitations in capturing child kinematics in emergency events with existing crash test dummies. Extending previous research, this thesis has resulted in deeper knowledge of how children are affected by emergency events prior to crash, in terms of quantifying the frequency of vehicle maneuvers in real world data, measuring the kinematics of children and child crash test dummies in these scenarios and exploring a possible countermeasure to improve safety. The output has the potential to positively impact child safety in cars through the development of active safety systems, enhanced rear seat restraints, and improved test methods and test tools

    Child Passenger Kinematics in Emergency Manoeuvres

    No full text
    ABSTRACTIn motor vehicle impacts, a child’s head is generally the most frequently injured body region, irrespective of impact direction. Head to front seat back impact has been identified as a predominant cause of injury for rear seated, seat belt restrained children, aged 3 – 13, who sustained AIS2+ head injuries in frontal impacts. Previous research highlights vehicle manoeuvres prior to impact as possible contributing factors. Test tools to simulate occupant kinematics during emergency braking and steering manoeuvres would be valuable when investigating different scenarios and restraint systems. This thesis investigates children’s and different Anthropomorphic Test Devices’ (ATDs’) motion during emergency braking and steering manoeuvres in a passenger vehicle. The kinematic responses of child volunteers during the emergency manoeuvres in different restraint configurations were compared and discussed, and the current child ATDs from the Q-family and the Hybrid III (HIII) family were evaluated with respect to child occupants. The forward displacement was within the same range during the braking manoeuvres for all tested children, regardless of size and restraint system. All ATDs displayed less forward displacement and head rotation than the child volunteers; the HIII 6 year old on a booster cushion was closest to representing the kinematics of a child of similar age/size in this set-up. Maximum excursion was dependent on the initial seated posture and shoulder belt position on the shoulder. Boosters with a backrest influenced the initial seated posture and thus resulted in the head position being more forward during maximum excursion.For the steering manoeuvres, the Q ATDs were closer regarding mean values compared to the children, however due to the large variety in lateral displacements of the children, the child performance range covers both the dummy families for the evaluated sizes of 6 and 10 year old ATDs in this set-up.The braking and steering manoeuvres with child volunteers and ATDs carried out in this thesis provide novel and unique knowledge of possible pre-crash postures of children and currently available ATDs across a variety of restraint systems in vehicle emergency manoeuvres. The test methods and methods of analysis were repeatable and the results offer input to safety system development, ATD design as well as test method development. Appropriate initial shoulder belt position is important during steering and braking manoeuvres. For real world protection, it is important to take into account the growing child, focusing on and understanding such aspects as initial seated posture, i.e., head position, shoulder belt position and how the child is restrained by the seat belt, as well as the booster design.KEYWORDS: methods, pre-crash, braking, steering, child volunteers, child restraint systems, child AT

    Kinematics and shoulder belt position of child anthropomorphic test devices during steering maneuvers.

    No full text
    Objectives: The objective of this study was to quantify and compare the kinematics and shoulder belt position of child anthropomorphic test devices (ATDs) during emergency steering maneuvers. Furthermore, the ATDs were compared to the results from child volunteers aged 4 to 12 in the same test setup (Bohman, Stockman, et al. 2011). Methods: A driving study was conducted on a test track comprising 4 ATDs: the Q6, Q10, and Hybrid III (HIII) 6- and 10-year-old ATDs restrained in the rear seat of a passenger vehicle. The ATDs were exposed to 2 repeated steering maneuvers in each restraint system. The Q6 and HIII 6-year-old were restrained on booster cushions as well as high-back booster seats. The Q10 and HIII 10-year-old were restrained on booster cushions or restrained by 3-point seat belts directly on the seat. Lateral motion of the forehead and upper sternum was determined, as well as shoulder belt movement on shoulder and torso tilting angle. Results: All ATDs began to move approximately at the same point in time corresponding to a vehicle lateral acceleration of just below 0.2 g. In the later phase of the maneuver, Q10 had moved 26 percent less than the children when restrained by seat belt only and 35 percent less when on a booster cushion. Corresponding numbers for the HIII 10-year-old were 43 and 44 percent higher than for children. Compared to children, the Q6 had moved 34 percent less when restrained on a high-back booster seat and 31 percent less when on a booster cushion. Corresponding numbers for HIII 6-year-old were 7 and 28 percent higher than for children. Due to extensive variety of lateral displacements observed in the children, child performance range covers both ATD families for the evaluated sizes of 6- and 10-year-old ATDs. Conclusions: Compared to children, the HIII ATDs were closer with regards to mean values in the initial phase of the maneuver and the Q ATDs were closer in the end of the ramping phase of the lateral acceleration. The question regarding which ATD replicates better the behavior of children exposed to steering maneuvers still remains open. As shown in this study, it depends on the focus of the comparison and on what phase of the maneuver is of interest. This study provides valuable knowledge on how representative the current ATDs are for replicating potential precrash postures of children as a result of vehicle emergency steering maneuvers for a variety of restraint systems and ATD sizes
    • 

    corecore