82 research outputs found
Lime stabilisation for earthworks: a UK perspective
Lime stabilisation is a versatile technique applied during earthworks operations. Modern soil recycling units are much more efficient at pulverising fill material and intermixing the added binder/water than machinery available 20 years ago. While supplier innovation adds flexibility to the site working method, specifications have not been sufficiently updated to permit optimal application. This review paper details the physico-chemical changes instigated through the lime-clay soil reaction, updating previous reviews. It aims to assist scientific debate, current practitioners and future specification changes. For example, the application of the minimum 24 h mellowing periods (mandatory to UK specifications) with high reactivity, quicklime powders is concluded to cause increased air voids in the compacted fill. Increased air voids are associated with reduced long-term strength and potential volume change from water ingress, which is of particular concern for sulfate swelling. Shorter mellowing periods and/or use of hydrated lime may lesson this issue; however, a 'one size fits all' approach is discouraged in preference to site-specific methodologies refined to suit the fill material and project requirements. The discussion also summarises working methods which may lower the risk of sulfate swell and defines areas requiring further practical research
Verticalization of bacterial biofilms
Biofilms are communities of bacteria adhered to surfaces. Recently, biofilms
of rod-shaped bacteria were observed at single-cell resolution and shown to
develop from a disordered, two-dimensional layer of founder cells into a
three-dimensional structure with a vertically-aligned core. Here, we elucidate
the physical mechanism underpinning this transition using a combination of
agent-based and continuum modeling. We find that verticalization proceeds
through a series of localized mechanical instabilities on the cellular scale.
For short cells, these instabilities are primarily triggered by cell division,
whereas long cells are more likely to be peeled off the surface by nearby
vertical cells, creating an "inverse domino effect". The interplay between cell
growth and cell verticalization gives rise to an exotic mechanical state in
which the effective surface pressure becomes constant throughout the growing
core of the biofilm surface layer. This dynamical isobaricity determines the
expansion speed of a biofilm cluster and thereby governs how cells access the
third dimension. In particular, theory predicts that a longer average cell
length yields more rapidly expanding, flatter biofilms. We experimentally show
that such changes in biofilm development occur by exploiting chemicals that
modulate cell length.Comment: Main text 10 pages, 4 figures; Supplementary Information 35 pages, 15
figure
TOR complex 2 is needed for cell cycle progression and anchorage-independent growth of MCF7 and PC3 tumor cells
<p>Abstract</p> <p>Background</p> <p>AKT signaling promotes cell growth, proliferation and survival and is hyperactivated in many cancers. TOR complex 2 (TORC2) activates AKT by phosphorylating it on the 'hydrophobic motif' site. Hydrophobic motif site phosphorylation is needed only for a subset of AKT functions. Whether proliferation of tumor cells depends on TORC2 activity has not been thoroughly explored.</p> <p>Methods</p> <p>We used RNAi-mediated knockdown of rictor to inhibit TORC2 activity in MCF7 and PC3 tumor cells to analyze the importance of TORC2 on proliferation of tumor cells.</p> <p>Results</p> <p>TORC2 inhibition reduced proliferation and anchorage-independent growth of both cell lines. Rictor depleted cells accumulated G1 phase, and showed prominent downregulation of Cyclin D1.</p> <p>Conclusion</p> <p>This study provides further evidence that inhibition of TORC2 activity might be a useful strategy to inhibit proliferation of tumor cells and subsequent tumor growth.</p
MAP4K3 Is a Component of the TORC1 Signalling Complex that Modulates Cell Growth and Viability in Drosophila melanogaster
Background: MAP4K3 is a conserved Ser/Thr kinase that has being found in connection with several signalling pathways, including the Imd, EGFR, TORC1 and JNK modules, in different organisms and experimental assays. We have analyzed the consequences of changing the levels of MAP4K3 expression in the development of the Drosophila wing, a convenient model system to characterize gene function during epithelial development. Methodology and Principal Findings: Using loss-of-function mutants and over-expression conditions we find that MAP4K3 activity affects cell growth and viability in the Drosophila wing. These requirements are related to the modulation of the TORC1 and JNK signalling pathways, and are best detected when the larvae grow in a medium with low protein concentration (TORC1) or are exposed to irradiation (JNK). We also show that MAP4K3 display strong genetic interactions with different components of the InR/Tor signalling pathway, and can interact directly with the GTPases RagA and RagC and with the multi-domain kinase Tor. Conclusions and Significance: We suggest that MAP4K3 has two independent functions during wing development, one related to the activation of the JNK pathway in response to stress and other in the assembling or activation of the TORC1 complex, being critical to modulate cellular responses to changes in nutrient availability
Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases
The production of peroxide and superoxide is an inevitable consequence of
aerobic metabolism, and while these particular "reactive oxygen species" (ROSs)
can exhibit a number of biological effects, they are not of themselves
excessively reactive and thus they are not especially damaging at physiological
concentrations. However, their reactions with poorly liganded iron species can
lead to the catalytic production of the very reactive and dangerous hydroxyl
radical, which is exceptionally damaging, and a major cause of chronic
inflammation. We review the considerable and wide-ranging evidence for the
involvement of this combination of (su)peroxide and poorly liganded iron in a
large number of physiological and indeed pathological processes and
inflammatory disorders, especially those involving the progressive degradation
of cellular and organismal performance. These diseases share a great many
similarities and thus might be considered to have a common cause (i.e.
iron-catalysed free radical and especially hydroxyl radical generation). The
studies reviewed include those focused on a series of cardiovascular, metabolic
and neurological diseases, where iron can be found at the sites of plaques and
lesions, as well as studies showing the significance of iron to aging and
longevity. The effective chelation of iron by natural or synthetic ligands is
thus of major physiological (and potentially therapeutic) importance. As
systems properties, we need to recognise that physiological observables have
multiple molecular causes, and studying them in isolation leads to inconsistent
patterns of apparent causality when it is the simultaneous combination of
multiple factors that is responsible. This explains, for instance, the
decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference
CO2 storage and release in the deep Southern Ocean on millennial to centennial timescales
This work was supported by NERC Standard Grant NE/N003861/1 to J.W.B.R. and L.F.R., a NOAA Climate and Global Change VSP Fellowship to J.W.B.R, NERC Standard Grant NE/M004619/1 to AB and JWBR, a NERC Strategic Environmental Science Capital Grant to A.B. and J.W.B.R., Marie Curie Career Integration Grant CIG14-631752 to AB, an ERC consolidator grant to L.F.R., NSF grant OCE-1503129 to J.F.A., and NERC studentships to B.T. and E.L.The cause of changes in atmospheric carbon dioxide (CO2) during the recent ice ages is yet to be fully explained. Most mechanisms for glacial–interglacial CO2 change have centred on carbon exchange with the deep ocean, owing to its large size and relatively rapid exchange with the atmosphere1. The Southern Ocean is thought to have a key role in this exchange, as much of the deep ocean is ventilated to the atmosphere in this region2. However, it is difficult to reconstruct changes in deep Southern Ocean carbon storage, so few direct tests of this hypothesis have been carried out. Here we present deep-sea coral boron isotope data that track the pH—and thus the CO2 chemistry—of the deep Southern Ocean over the past forty thousand years. At sites closest to the Antarctic continental margin, and most influenced by the deep southern waters that form the ocean’s lower overturning cell, we find a close relationship between ocean pH and atmospheric CO2: during intervals of low CO2, ocean pH is low, reflecting enhanced ocean carbon storage; and during intervals of rising CO2, ocean pH rises, reflecting loss of carbon from the ocean to the atmosphere. Correspondingly, at shallower sites we find rapid (millennial- to centennial-scale) decreases in pH during abrupt increases in CO2, reflecting the rapid transfer of carbon from the deep ocean to the upper ocean and atmosphere. Our findings confirm the importance of the deep Southern Ocean in ice-age CO2 change, and show that deep-ocean CO2 release can occur as a dynamic feedback to rapid climate change on centennial timescales.PostprintPeer reviewe
Oxidation of 3-hydroxyanthranilic acid to the phenoxazinone cinnabarinic acid by peroxyl radicals and by compound I of peroxidases or catalase
Since 3-hydroxyanthranilic acid (3HAA), an oxidation product of tryptophan metabolism, is a powerful radical scavenger [Christen, S., Peterhans, E., ; Stocker, R. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 2506], its reaction with peroxyl radicals was investigated further. Exposure to aqueous peroxyl radicals generated at constant rate under air from the thermolabile radical initiator 2,2'-azobis[2-amid-inopropane] hydrochloride (AAPH) resulted in rapid consumption of 3HAA with initial accumulation of its cyclic dimer, cinnabarinic acid (CA). The initial rate of formation of the phenoxazinone CA accounted for approximately 75% of the initial rate of oxidation of 3HAA, taking into account that 2 mol of 3HAA are required to form 1 mol of CA. Consumption of 3HAA under anaerobic conditions (where alkyl radicals are produced from AAPH) was considerably slower and did not result in detectable formation of CA. Addition of superoxide dismutase enhanced autoxidation of 3HAA as well as the initial rates of peroxyl radical-induced oxidation of 3HAA and formation of CA by approximately 40-50%, whereas inclusion of xanthine/xanthine oxidase decreased the rate of oxidation of 3HAA by approximately 50% and inhibited formation of CA almost completely, suggesting that superoxide anion radical (O2.-) was formed and reacted with reaction intermediate(s) to curtail formation of CA. Formation of CA was also observed when 3HAA was added to performed compound I of horseradish peroxidase (HRPO) or catalytic amounts of either HRPO, myeloperoxidase, or bovine liver catalase together with glucose/glucose oxidase.(ABSTRACT TRUNCATED AT 250 WORDS
Adapting to a warmer ocean – seasonal shift of baleen whale movements over three decades
Date of Acceptance: 11/02/2015Global warming poses particular challenges to migratory species, which face changes to the multiple environments occupied during migration. For many species, the timing of migration between summer and winter grounds and also within-season movements are crucial to maximise exploitation of temporarily abundant prey resources in feeding areas, themselves adapting to the warming planet. We investigated the temporal variation in the occurrence of fin (Balaenoptera physalus) and humpback whales (Megaptera novaeangliae) in a North Atlantic summer feeding ground, the Gulf of St. Lawrence (Canada), from 1984 to 2010 using a long-term study of individually identifiable animals. These two sympatric species both shifted their date of arrival at a previously undocumented rate of more than 1day per year earlier over the study period thus maintaining the approximate 2-week difference in arrival of the two species and enabling the maintenance of temporal niche separation. However, the departure date of both species also shifted earlier but at different rates resulting in increasing temporal overlap over the study period indicating that this separation may be starting to erode. Our analysis revealed that the trend in arrival was strongly related to earlier ice break-up and rising sea surface temperature, likely triggering earlier primary production. The observed changes in phenology in response to ocean warming are a remarkable example of phenotypic plasticity and may partly explain how baleen whales were able to survive a number of changes in climate over the last several million years. However, it is questionable whether the observed rate of change in timing can be maintained. Substantial modification to the distribution or annual life cycle of these species might be required to keep up with the ongoing warming of the oceans.Publisher PDFPeer reviewe
- …
