3,211 research outputs found

    An investigation into linearity with cumulative emissions of the climate and carbon cycle response in HadCM3LC

    Get PDF
    We investigate the extent to which global mean temperature, precipitation, and the carbon cycle are constrained by cumulative carbon emissions throughout four experiments with a fully coupled climate-carbon cycle model. The two paired experiments adopt contrasting, idealised approaches to climate change mitigation at different action points this century, with total emissions exceeding two trillion tonnes of carbon in the later pair. Their initially diverging cumulative emissions trajectories cross after several decades, before diverging again. We find that their global mean temperatures are, to first order, linear with cumulative emissions, though regional differences in temperature of up to 1.5K exist when cumulative emissions of each pair coincide. Interestingly, although the oceanic precipitation response scales with cumulative emissions, the global precipitation response does not, due to a decrease in precipitation over land above cumulative emissions of around one trillion tonnes of carbon (TtC). Most carbon fluxes and stores are less well constrained by cumulative emissions as they reach two trillion tonnes. The opposing mitigation approaches have different consequences for the Amazon rainforest, which affects the linearity with which the carbon cycle responds to cumulative emissions. Averaged over the two fixed-emissions experiments, the transient response to cumulative carbon emissions (TCRE) is 1.95 K TtC-1, at the upper end of the IPCC’s range of 0.8-2.5 K TtC-1

    Intermittent convection, mixed boundary conditions and the stability of the thermohaline circulation

    Get PDF
    Intermittent convection and its consequences on the stability of the thermohaline circulation are investigated with an oceanic global circulation model (OGCM) and simple box models. A two-box model shows that intermittency is a consequence of the non-linearity of the equation of state and of the ratio of heat and freshwater fluxes at surface versus the fluxes at depth. Moreover, it only occurs in areas, where the instability of the water column is caused by temperature or by salinity. Intermittency is not necessarily suppressed by long restoring times. Because intermittent convection causes temporal variations of the ocean-atmosphere fluxes, an OGCM cannot reach an exact equilibrium. After a switch to mixed boundary conditions, changes of the convective activity occur in areas where intermittency is observed. Intermittent convection becomes either continuous or is stopped depending on the method used for calculating the freshwater fluxes. Advective and diffusive fluxes between these regions and their surroundings change in order to balance the altered convective fluxes. A comparison between the OGCM and a six-box model illustrates that this may lead to an alteration of adjacent deep convection and of the related deep water formation

    Global temperature definition affects achievement of long-term climate goals

    Get PDF
    The Paris Agreement on climate change aims to limit 'global average temperature' rise to 'well below 2 °C' but reported temperature depends on choices about how to blend air and water temperature data, handle changes in sea ice and account for regions with missing data. Here we use CMIP5 climate model simulations to estimate how these choices affect reported warming and carbon budgets consistent with the Paris Agreement. By the 2090s, under a low-emissions scenario, modelled global near-surface air temperature rise is 15% higher (5%-95% range 6%-21%) than that estimated by an approach similar to the HadCRUT4 observational record. The difference reduces to 8% with global data coverage, or 4% with additional removal of a bias associated with changing sea-ice cover. Comparison of observational datasets with different data sources or infilling techniques supports our model results regarding incomplete coverage. From high-emission simulations, we find that a HadCRUT4 like definition means higher carbon budgets and later exceedance of temperature thresholds, relative to global near-surface air temperature. 2 °C warming is delayed by seven years on average, to 2048 (2035-2060), and CO2 emissions budget for a >50% chance of <2 °C warming increases by 67 GtC (246 GtCO2)

    Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica

    Get PDF
    A high-resolution ice-core record of atmospheric CO2 concentration over the Holocene epoch shows that the global carbon cycle has not been in steady state during the past 11,000 years. Analysis of the CO2 concentration and carbon stable-isotope records, using a one-dimensional carbon-cycle model,uggests that changes in terrestrial biomass and sea surface temperature were largely responsible for the observed millennial-scale changes of atmospheric CO2 concentrations

    Direct north-south synchronization of abrupt climate change record in ice cores using Beryllium 10

    Get PDF
    A new, decadally resolved record of the &lt;sup&gt;10&lt;/sup&gt;Be peak at 41 kyr from the EPICA Dome C ice core (Antarctica) is used to match it with the same peak in the GRIP ice core (Greenland). This permits a direct synchronisation of the climatic variations around this time period, independent of uncertainties related to the ice age-gas age difference in ice cores. Dansgaard-Oeschger event 10 is in the period of best synchronisation and is found to be coeval with an Antarctic temperature maximum. Simulations using a thermal bipolar seesaw model agree reasonably well with the observed relative climate chronology in these two cores. They also reproduce three Antarctic warming events observed between A1 and A2

    Cell Patterning with Mucin Biopolymers

    Get PDF
    The precise spatial control of cell adhesion to surfaces is an endeavor that has enabled discoveries in cell biology and new possibilities in tissue engineering. The generation of cell-repellent surfaces currently requires advanced chemistry techniques and could be simplified. Here we show that mucins, glycoproteins of high structural and chemical complexity, spontaneously adsorb on hydrophobic substrates to form coatings that prevent the surface adhesion of mammalian epithelial cells, fibroblasts, and myoblasts. These mucin coatings can be patterned with micrometer precision using a microfluidic device, and are stable enough to support myoblast differentiation over seven days. Moreover, our data indicate that the cell-repellent effect is dependent on mucin-associated glycans because their removal results in a loss of effective cell-repulsion. Last, we show that a critical surface density of mucins, which is required to achieve cell-repulsion, is efficiently obtained on hydrophobic surfaces, but not on hydrophilic glass surfaces. However, this limitation can be overcome by coating glass with hydrophobic fluorosilane. We conclude that mucin biopolymers are attractive candidates to control cell adhesion on surfaces.European Commission (Marie Curie International Outgoing Fellowship for Career Development, “BIOMUC”)National Institutes of Health (U.S.) (NIH Grant 1R01GM100473)National Science Foundation (U.S.) (award number DMR-819762)National Science Foundation (U.S.) (NSF Grant OCE-0744641-CAREER)National Science Foundation (U.S.) (Award DMR-0819762)Samsung Scholarship FoundationMassachusetts Institute of Technology (Startup funds)Massachusetts Institute of Technology (Junior Faculty award

    Carbon Isotope Constraints on the Deglacial CO2 Rise from Ice Cores

    Get PDF
    The stable carbon isotope ratio of atmospheric CO2 (d13Catm) is a key parameter in deciphering past carbon cycle changes. Here we present d13Catm data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in d13Catm during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the d13Catm evolution. During the Last Glacial Maximum, d13Catm and atmospheric CO2 concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then

    Validation of the CUTLASS HF radar gravity wave observing capability using EISCAT CP-1 data

    Get PDF

    New specimen and redescription of Anisodontosaurus greeri (Moenkopi Formation: Middle Triassic) and the spatiotemporal origins of Trilophosauridae

    Get PDF
    Anisodontosaurus greeri is an enigmatic small-bodied tetrapod with a heterodont dentition from the Holbrook Member of the Moenkopi Formation (Middle Triassic) of Arizona (U.S.A.). The evolutionary relationships of this taxon have long been debated and remain uncertain. Using micro-computed tomography (”CT) scans we redescribe the holotype of Anisodontosaurus greeri (UCMP 37804), as well as an additional specimen (MNA.V.1478) that had been informally referred to this taxon. Our new data reveal hidden details of the dentition (i.e., ankylothecodonty and absence of replacement teeth) that, in combination with the tricuspid and mediolaterally expanded crowns, support a referral of both specimens to the archosauromorph clade Trilophosauridae. The referral of MNA.V.1478 to Anisodontosaurus greeri is supported by the unique anatomy of the highly differentiated dentition (i.e., ‘figure of 8’-shaped premolariforms in occlusal views; mesiodistally short tooth row; presence of a distal ‘molariform’ crown). Comparison of Anisodontosaurus greeri with other trilophosaurids highlights marked similarities with Variodens inopinatus from the Upper Triassic deposits of the U.K. Our cladistic analyses confirm these observations, and recover, for the first time, two distinct lineages within Trilophosauridae: one geologically long-lived and comprising Anisodontosaurus and Variodens; and one comprising Tricuspisaurus, Trilophosaurus spp., and Spinosuchus. These results imply that: (i) Anisodontosaurus is one of the oldest known trilophosaurids worldwide and the oldest in North America; (ii) trilophosaurids achieved a broad distribution at low latitudes within western Pangea by the Middle Triassic; (iii) small body sizes were more common than previously thought among trilophosaurids
    • 

    corecore