3,501 research outputs found

    Applications of high pressure differential scanning calorimetry to aviation fuel thermal stability research

    Get PDF
    High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels

    Extreme midlatitude cyclones and their implications for precipitation and wind speed extremes in simulations of the Maunder Minimum versus present day conditions

    Get PDF
    Extreme midlatitude cyclone characteristics, precipitation, wind speed events, their inter-relationships, and the connection to large-scale atmospheric patterns are investigated in simulations of a prolonged cold period, known as the Maunder Minimum from 1640 to 1715 and compared with today. An ensemble of six simulations for the Maunder Minimum as well as a control simulation for perpetual 1990 conditions are carried out with a coupled atmosphere-ocean general circulation model, i.e., the Climate Community System Model (CCSM). The comparison of the simulations shows that in a climate state colder than today the occurrence of cyclones, the extreme events of precipitation and wind speed shift southward in all seasons in the North Atlantic and the North Pacific. The extremes of cyclone intensity increases significantly in winter in almost all regions, which is related to a stronger meridional temperature gradient and an increase in lower tropospheric baroclinicity. Extremes of cyclone intensity in subregions of the North Atlantic are related to extremes in precipitation and in wind speed during winter. Moreover, extremes of cyclone intensity are also connected to distinct large-scale atmospheric patterns for the different subregions, but these relationships vanish during summer. Analyzing the mean 1,000hPa geopotential height change of the Maunder Minimum simulations compared with the control simulation, we find a similar pattern as the correlation pattern with the cyclone intensity index of the southern Europe cyclones. This illustrates that changes in the atmospheric high-frequency, i.e., the simulated southward shift of cyclones in the North Atlantic and the related increase of extreme precipitation and wind speed in particular in the Mediterranean in winter, are associated with large-scale atmospheric circulation change

    Performance Analysis of Cloud Computing Architectures Using Discrete Event Simulation

    Get PDF
    Cloud computing offers the economic benefit of on-demand resource allocation to meet changing enterprise computing needs. However, the flexibility of cloud computing is disadvantaged when compared to traditional hosting in providing predictable application and service performance. Cloud computing relies on resource scheduling in a virtualized network-centric server environment, which makes static performance analysis infeasible. We developed a discrete event simulation model to evaluate the overall effectiveness of organizations in executing their workflow in traditional and cloud computing architectures. The two part model framework characterizes both the demand using a probability distribution for each type of service request as well as enterprise computing resource constraints. Our simulations provide quantitative analysis to design and provision computing architectures that maximize overall mission effectiveness. We share our analysis of key resource constraints in cloud computing architectures and findings on the appropriateness of cloud computing in various applications

    Reconstructing climate variability from Greenland ice sheet accumulation: An ERA40 study

    Get PDF
    Re-analysis data covering the period 1958–2001 are used to investigate the relationship between regional, inter-annual snow accumulation variability over the Greenland Ice Sheet (GrIS) and large scale circulation patterns, cyclone frequency, and strength. Four regions of the GrIS have been identified that are highly independent with respect to accumulation variability. Accumulation indices of three of these regions are associated with distinct large-scale circulation patterns: Central-western GrIS reveals an inverse relationship with a NAO-like pattern, the south-west a positive correlation with a high pressure bridge from central North Atlantic to Scandinavia, and the south-eastern GrIS a positive correlation with a high-pressure anomaly over the Greenland Sea. These large-scale patterns also impact European climate in different ways. Accumulation variability in north-eastern GrIS, however, is dominated by cyclones originating from the Greenland Sea. Thus, Greenland ice core accumulation records offer the potential to reconstruct various large-scale circulation patterns and regional storm activity

    Post of the latter days : Andrew Marvell

    Get PDF
    2 volsSIGLEAvailable from British Library Document Supply Centre- DSC:D38840/82 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    First Demonstration of a Pixelated Charge Readout for Single-Phase Liquid Argon Time Projection Chambers

    Full text link
    Liquid Argon Time Projection Chambers (LArTPCs) have been selected for the future long-baseline Deep Underground Neutrino Experiment (DUNE). To allow LArTPCs to operate in the high-multiplicity near detector environment of DUNE, a new charge readout technology is required. Traditional charge readout technologies introduce intrinsic ambiguities, combined with a slow detector response, these ambiguities have limited the performance of LArTPCs, until now. Here, we present a novel pixelated charge readout that enables the full 3D tracking capabilities of LArTPCs. We characterise the signal to noise ratio of charge readout chain, to be about 14, and demonstrate track reconstruction on 3D space points produced by the pixel readout. This pixelated charge readout makes LArTPCs a viable option for the DUNE near detector complex.Comment: 13 pages, 9 figure

    EQUATIONS OF STATE FOR FINITE NUCLEAR SYSTEMS

    Get PDF

    Reação de genótipos de batata à requeima (Phytophthora infestans).

    Get PDF
    bitstream/item/30474/1/boletim-83.pd

    Reaction dynamics in Pb+Pb at the CERN/SPS: from partonic degrees of freedom to freeze-out

    Get PDF
    We analyze the reaction dynamics of central Pb+Pb collisions at 160 GeV/nucleon. First we estimate the energy density pile-up at mid-rapidity and calculate its excitation function: The energy density is decomposed into hadronic and partonic contributions. A detailed analysis of the collision dynamics in the framework of a microscopic transport model shows the importance of partonic degrees of freedom and rescattering of leading (di)quarks in the early phase of the reaction for E > 30 GeV/nucleon. The energy density reaches up to 4 GeV/fm^3, 95% of which are contained in partonic degrees of freedom. It is shown that cells of hadronic matter, after the early reaction phase, can be viewed as nearly chemically equilibrated. This matter never exceeds energy densities of 0.4 GeV/fm^3, i.e. a density above which the notion of separated hadrons loses its meaning. The final reaction stage is analyzed in terms of hadron ratios, freeze-out distributions and a source analysis for final state pions.Comment: 10 pages, 7 figures, Proceedings of the Erice School on Nuclear Physics in Erice, Sicily, Italy, September 17 -25 1998; to be published in Progress in Particle and Nuclear Physics Vol. 4

    Identifying Blood Biomarkers and Physiological Processes That Distinguish Humans with Superior Performance under Psychological Stress

    Get PDF
    BACKGROUND:Attrition of students from aviation training is a serious financial and operational concern for the U.S. Navy. Each late stage navy aviator training failure costs the taxpayer over $1,000,000 and ultimately results in decreased operational readiness of the fleet. Currently, potential aviators are selected based on the Aviation Selection Test Battery (ASTB), which is a series of multiple-choice tests that evaluate basic and aviation-related knowledge and ability. However, the ASTB does not evaluate a person's response to stress. This is important because operating sophisticated aircraft demands exceptional performance and causes high psychological stress. Some people are more resistant to this type of stress, and consequently better able to cope with the demands of naval aviation, than others. METHODOLOGY/PRINCIPAL FINDINGS:Although many psychological studies have examined psychological stress resistance none have taken advantage of the human genome sequence. Here we use high-throughput -omic biology methods and a novel statistical data normalization method to identify plasma proteins associated with human performance under psychological stress. We identified proteins involved in four basic physiological processes: innate immunity, cardiac function, coagulation and plasma lipid physiology. CONCLUSIONS/SIGNIFICANCE:The proteins identified here further elucidate the physiological response to psychological stress and suggest a hypothesis that stress-susceptible pilots may be more prone to shock. This work also provides potential biomarkers for screening humans for capability of superior performance under stress
    • …
    corecore