105 research outputs found

    ΦCrAss001 represents the most abundant bacteriophage family in the human gut and infects Bacteroides intestinalis

    Get PDF
    peer-reviewedCrAssphages are an extensive and ubiquitous family of tailed bacteriophages, predicted to infect bacteria of the order Bacteroidales. Despite being found in ~50% of individuals and representing up to 90% of human gut viromes, members of this viral family have never been isolated in culture and remain understudied. Here, we report the isolation of a CrAssphage (ΦCrAss001) from human faecal material. This bacteriophage infects the human gut symbiont Bacteroides intestinalis, confirming previous in silico predictions of the likely host. DNA sequencing demonstrates that the bacteriophage genome is circular, 102 kb in size, and has unusual structural traits. In addition, electron microscopy confirms that ΦcrAss001 has a podovirus-like morphology. Despite the absence of obvious lysogeny genes, ΦcrAss001 replicates in a way that does not disrupt proliferation of the host bacterium, and is able to maintain itself in continuous host culture during several weeks

    Isolation of a Novel Phage with Activity against Streptococcus mutans Biofilms

    Get PDF
    peer-reviewedStreptococcus mutans is one of the principal agents of caries formation mainly, because of its ability to form biofilms at the tooth surface. Bacteriophages (phages) are promising antimicrobial agents that could be used to prevent or treat caries formation by S. mutans. The aim of this study was to isolate new S. mutans phages and to characterize their antimicrobial properties. A new phage, ɸAPCM01, was isolated from a human saliva sample. Its genome was closely related to the only two other available S. mutans phage genomes, M102 and M102AD. ɸAPCM01 inhibited the growth of S. mutans strain DPC6143 within hours in broth and in artificial saliva at multiplicity of infections as low as 2.5x10-5. In the presence of phage ɸAPCM01 the metabolic activity of a S. mutans biofilm was reduced after 24 h of contact and did not increased again after 48 h, and the live cells in the biofilm decreased by at least 5 log cfu/ml. Despite its narrow host range, this newly isolated S. mutans phage exhibits promising antimicrobial properties

    RNA phage biology in a metagenomic era

    Get PDF
    The number of novel bacteriophage sequences has expanded significantly as a result of many metagenomic studies of phage populations in diverse environments. Most of these novel sequences bear little or no homology to existing databases (referred to as the “viral dark matter”). Also, these sequences are primarily derived from DNA-encoded bacteriophages (phages) with few RNA phages included. Despite the rapid advancements in high-throughput sequencing, few studies enrich for RNA viruses, i.e., target viral rather than cellular fraction and/or RNA rather than DNA via a reverse transcriptase step, in an attempt to capture the RNA viruses present in a microbial communities. It is timely to compile existing and relevant information about RNA phages to provide an insight into many of their important biological features, which should aid in sequence-based discovery and in their subsequent annotation. Without comprehensive studies, the biological significance of RNA phages has been largely ignored. Future bacteriophage studies should be adapted to ensure they are properly represented in phageomic studies

    Complete genome sequence of Escherichia coli phage APC_JM3.2 isolated from a chicken cecum

    Get PDF
    Avian pathogenic Escherichia coli (APEC) bacteria are a significant challenge to the poultry industry. Bacteriophages (phages) have the potential to control APEC strains, increasing animal welfare and economic productivity. Here, we report the isolation of an E. coli-infecting phage, APC_JM3.2, isolated from the cecum of a broiler chicken in Ireland

    Structure and Assembly of TP901-1 Virion Unveiled by Mutagenesis

    Get PDF
    International audienceBacteriophages of the Siphoviridae family represent the most abundant viral morphology in the biosphere, yet many molecular aspects of their virion structure, assembly and associated functions remain to be unveiled. In this study, we present a comprehensive mutational and molecular analysis of the temperate Lactococcus lactis-infecting phage TP901-1. Fourteen mutations located within the structural module of TP901-1 were created; twelve mutations were designed to prevent full length translation of putative proteins by nonsense mutations, while two additional mutations caused aberrant protein production. Electron microscopy and Western blot analysis of mutant virion preparations, as well as in vitro assembly of phage mutant combinations, revealed the essential nature of many of the corresponding gene products and provided information on their biological function(s). Based on the information obtained, we propose a functional and assembly model of the TP901-1 Siphoviridae virion

    Complete Genome Sequence of <i>Escherichia coli</i> Phage APC_JM3.2 Isolated from a Chicken Cecum

    Get PDF
    peer-reviewedAvian pathogenic Escherichia coli (APEC) bacteria are a significant challenge to the poultry industry. Bacteriophages (phages) have the potential to control APEC strains, increasing animal welfare and economic productivity. Here, we report the isolation of an E. coli-infecting phage, APC_JM3.2, isolated from the cecum of a broiler chicken in Ireland.Science Foundation Irelan

    Reproducible protocols for metagenomic analysis of human faecal phageomes

    Get PDF
    peer-reviewedAll sequence data used in the analyses were deposited in the Sequence read Archive (SRA) (http://www.ncbi.nlm.nih.gov/sra) under BioProject PRJNA407341. Sample IDs, meta data and corresponding accession numbers are summarised in Additional file 2: Table S2. All raw count tables, 16S taxonomic assignments, BLAST top hits for viral contigs and R code used for the analysis are available at (https://figshare.com/s/71163558b4f78e3e7ed6).Background Recent studies have demonstrated that the human gut is populated by complex, highly individual and stable communities of viruses, the majority of which are bacteriophages. While disease-specific alterations in the gut phageome have been observed in IBD, AIDS and acute malnutrition, the human gut phageome remains poorly characterised. One important obstacle in metagenomic studies of the human gut phageome is a high level of discrepancy between results obtained by different research groups. This is often due to the use of different protocols for enriching virus-like particles, nucleic acid purification and sequencing. The goal of the present study is to develop a relatively simple, reproducible and cost-efficient protocol for the extraction of viral nucleic acids from human faecal samples, suitable for high-throughput studies. We also analyse the effect of certain potential confounding factors, such as storage conditions, repeated freeze-thaw cycles, and operator bias on the resultant phageome profile. Additionally, spiking of faecal samples with an exogenous phage standard was employed to quantitatively analyse phageomes following metagenomic sequencing. Comparative analysis of phageome profiles to bacteriome profiles was also performed following 16S rRNA amplicon sequencing. Results Faecal phageome profiles exhibit an overall greater individual specificity when compared to bacteriome profiles. The phageome and bacteriome both exhibited moderate change when stored at + 4 °C or room temperature. Phageome profiles were less impacted by multiple freeze-thaw cycles than bacteriome profiles, but there was a greater chance for operator effect in phageome processing. The successful spiking of faecal samples with exogenous bacteriophage demonstrated large variations in the total viral load between individual samples. Conclusions The faecal phageome sequencing protocol developed in this study provides a valuable additional view of the human gut microbiota that is complementary to 16S amplicon sequencing and/or metagenomic sequencing of total faecal DNA. The protocol was optimised for several confounding factors that are encountered while processing faecal samples, to reduce discrepancies observed within and between research groups studying the human gut phageome. Rapid storage, limited freeze-thaw cycling and spiking of faecal samples with an exogenous phage standard are recommended for optimum results

    Viromes of one year old infants reveal the impact of birth mode on microbiome diversity

    Get PDF
    peer-reviewedEstablishing a diverse gut microbiota after birth is being increasingly recognised as important for preventing illnesses later in life. It is well established that bacterial diversity rapidly increases post-partum; however, few studies have examined the infant gut virome/phageome during this developmental period. We performed a metagenomic analysis of 20 infant faecal viromes at one year of age to determine whether spontaneous vaginal delivery (SVD) or caesarean section (CS) influenced viral composition. We find that birth mode results in distinctly different viral communities, with SVD infants having greater viral and bacteriophage diversity. We demonstrate that CrAssphage is acquired early in life, both in this cohort and two others, although no difference in birth mode is detected. A previous study has shown that bacterial OTU’s (operational taxonomic units) identified in the same infants could not discriminate between birth mode at 12 months of age. Therefore, our results indicate that vertical transmission of viral communities from mother to child may play a role in shaping the early life microbiome, and that birth mode should be considered when studying the early life gut virome

    Metagenomics reveals impact of geography and acute diarrheal disease on the Central Indian human gut microbiome

    Get PDF
    © 2020, © 2020 The Author(s). Published with license by Taylor & Francis Group, LLC. Background: The Central Indian gut microbiome remains grossly understudied. Herein, we sought to investigate the burden of antimicrobial resistance and diarrheal diseases, particularly Clostridioides difficile, in rural-agricultural and urban populations in Central India, where there is widespread unregulated antibiotic use. We utilized shotgun metagenomics to comprehensively characterize the bacterial and viral fractions of the gut microbiome and their encoded functions in 105 participants. Results: We observed distinct rural-urban differences in bacterial and viral populations, with geography exhibiting a greater influence than diarrheal status. Clostridioides difficile disease was more commonly observed in urban subjects, and their microbiomes were enriched in metabolic pathways relating to the metabolism of industrial compounds and genes encoding resistance to 3rd generation cephalosporins and carbapenems. By linking phages present in the microbiome to their bacterial hosts through CRISPR spacers, phage variation could be directly related to shifts in bacterial populations, with the auxiliary metabolic potential of rural-associated phages enriched for carbon and amino acid energy metabolism. Conclusions: We report distinct differences in antimicrobial resistance gene profiles, enrichment of metabolic pathways and phage composition between rural and urban populations, as well as a higher burden of Clostridioides difficile disease in the urban population. Our results reveal that geography is the key driver of variation in urban and rural Indian microbiomes, with acute diarrheal disease, including C. difficile disease exerting a lesser impact. Future studies will be required to understand the potential role of dietary, cultural, and genetic factors in contributing to microbiome differences between rural and urban populations
    • …
    corecore