300 research outputs found
Bayesian estimation of genetic parameters for multivariate threshold and continuous phenotypes and molecular genetic data in simulated horse populations using Gibbs sampling
<p>Abstract</p> <p>Background</p> <p>Requirements for successful implementation of multivariate animal threshold models including phenotypic and genotypic information are not known yet. Here simulated horse data were used to investigate the properties of multivariate estimators of genetic parameters for categorical, continuous and molecular genetic data in the context of important radiological health traits using mixed linear-threshold animal models via Gibbs sampling. The simulated pedigree comprised 7 generations and 40000 animals per generation. Additive genetic values, residuals and fixed effects for one continuous trait and liabilities of four binary traits were simulated, resembling situations encountered in the Warmblood horse. Quantitative trait locus (QTL) effects and genetic marker information were simulated for one of the liabilities. Different scenarios with respect to recombination rate between genetic markers and QTL and polymorphism information content of genetic markers were studied. For each scenario ten replicates were sampled from the simulated population, and within each replicate six different datasets differing in number and distribution of animals with trait records and availability of genetic marker information were generated. (Co)Variance components were estimated using a Bayesian mixed linear-threshold animal model via Gibbs sampling. Residual variances were fixed to zero and a proper prior was used for the genetic covariance matrix.</p> <p>Results</p> <p>Effective sample sizes (ESS) and biases of genetic parameters differed significantly between datasets. Bias of heritability estimates was -6% to +6% for the continuous trait, -6% to +10% for the binary traits of moderate heritability, and -21% to +25% for the binary traits of low heritability. Additive genetic correlations were mostly underestimated between the continuous trait and binary traits of low heritability, under- or overestimated between the continuous trait and binary traits of moderate heritability, and overestimated between two binary traits. Use of trait information on two subsequent generations of animals increased ESS and reduced bias of parameter estimates more than mere increase of the number of informative animals from one generation. Consideration of genotype information as a fixed effect in the model resulted in overestimation of polygenic heritability of the QTL trait, but increased accuracy of estimated additive genetic correlations of the QTL trait.</p> <p>Conclusion</p> <p>Combined use of phenotype and genotype information on parents and offspring will help to identify agonistic and antagonistic genetic correlations between traits of interests, facilitating design of effective multiple trait selection schemes.</p
A simple algorithm to estimate genetic variance in an animal threshold model using Bayesian inference
<p>Abstract</p> <p>Background</p> <p>In the genetic analysis of binary traits with one observation per animal, animal threshold models frequently give biased heritability estimates. In some cases, this problem can be circumvented by fitting sire- or sire-dam models. However, these models are not appropriate in cases where individual records exist on parents. Therefore, the aim of our study was to develop a new Gibbs sampling algorithm for a proper estimation of genetic (co)variance components within an animal threshold model framework.</p> <p>Methods</p> <p>In the proposed algorithm, individuals are classified as either "informative" or "non-informative" with respect to genetic (co)variance components. The "non-informative" individuals are characterized by their Mendelian sampling deviations (deviance from the mid-parent mean) being completely confounded with a single residual on the underlying liability scale. For threshold models, residual variance on the underlying scale is not identifiable. Hence, variance of fully confounded Mendelian sampling deviations cannot be identified either, but can be inferred from the between-family variation. In the new algorithm, breeding values are sampled as in a standard animal model using the full relationship matrix, but genetic (co)variance components are inferred from the sampled breeding values and relationships between "informative" individuals (usually parents) only. The latter is analogous to a sire-dam model (in cases with no individual records on the parents).</p> <p>Results</p> <p>When applied to simulated data sets, the standard animal threshold model failed to produce useful results since samples of genetic variance always drifted towards infinity, while the new algorithm produced proper parameter estimates essentially identical to the results from a sire-dam model (given the fact that no individual records exist for the parents). Furthermore, the new algorithm showed much faster Markov chain mixing properties for genetic parameters (similar to the sire-dam model).</p> <p>Conclusions</p> <p>The new algorithm to estimate genetic parameters via Gibbs sampling solves the bias problems typically occurring in animal threshold model analysis of binary traits with one observation per animal. Furthermore, the method considerably speeds up mixing properties of the Gibbs sampler with respect to genetic parameters, which would be an advantage of any linear or non-linear animal model.</p
Stimulation of Na<sup>+</sup>/H<sup>+</sup> Exchanger Isoform 1 Promotes Microglial Migration
Regulation of microglial migration is not well understood. In this study, we proposed that Na+/H+ exchanger isoform 1 (NHE-1) is important in microglial migration. NHE-1 protein was co-localized with cytoskeletal protein ezrin in lamellipodia of microglia and maintained its more alkaline intracellular pH (pHi). Chemoattractant bradykinin (BK) stimulated microglial migration by increasing lamellipodial area and protrusion rate, but reducing lamellipodial persistence time. Interestingly, blocking NHE-1 activity with its potent inhibitor HOE 642 not only acidified microglia, abolished the BK-triggered dynamic changes of lamellipodia, but also reduced microglial motility and microchemotaxis in response to BK. In addition, NHE-1 activation resulted in intracellular Na+ loading as well as intracellular Ca2+ elevation mediated by stimulating reverse mode operation of Na+/Ca2+ exchange (NCXrev). Taken together, our study shows that NHE-1 protein is abundantly expressed in microglial lamellipodia and maintains alkaline pHi in response to BK stimulation. In addition, NHE-1 and NCXrev play a concerted role in BK-induced microglial migration via Na+ and Ca2+ signaling. © 2013 Shi et al
Relationship between perceived body weight and body mass index based on self- reported height and weight among university students: a cross-sectional study in seven European countries
Mikolajczyk RT, Maxwell AE, El Ansari W, Stock C, Petkeviciene J, Guillen-Grima F. Relationship between perceived body weight and body mass index based on self- reported height and weight among university students: a cross-sectional study in seven European countries. BMC Public Health. 2010;10(1): 40.Background Despite low rates of obesity, many university students perceive themselves as overweight, especially women. This is of concern, because inappropriate weight perceptions can lead to unhealthy behaviours including eating disorders. Methods We used the database from the Cross National Student Health Survey (CNSHS), consisting of 5,900 records of university students from Bulgaria, Denmark, Germany, Lithuania, Poland, Spain and Turkey to analyse differences in perceived weight status based on the question: "Do you consider yourself much too thin, a little too thin, just right, a little too fat or much too fat?". The association between perceived weight and body mass index (BMI) calculated from self-reported weight and height was assessed with generalized non-parametric regression in R library gam. Results Although the majority of students reported a normal BMI (72-84% of males, 65-83% of females), only 32% to 68% of students considered their weight "just right". Around 20% of females with BMI of 20 kg/m2 considered themselves "a little too fat" or "too fat", and the percentages increased to 60% for a BMI of 22.5 kg/m2. Male students rarely felt "a little too fat" or "too fat" below BMI of 22.5 kg/m2, but most felt too thin with a BMI of 20 kg/m2. Conclusions Weight ideals are rather uniform across the European countries, with female students being more likely to perceive themselves as "too fat" at a normal BMI, while male students being more likely to perceive themselves as "too thin". Programs to prevent unhealthy behaviours to achieve ill-advised weight ideals may benefit students
BIM mediates synergistic killing of B-cell acute lymphoblastic leukemia cells by BCL-2 and MEK inhibitors
B-cell acute lymphoblastic leukemia (B-ALL) is an aggressive hematological disease that kills ~50% of adult patients. With the exception of some BCR-ABL1(+) patients who benefit from tyrosine kinase inhibitors, there are no effective targeted therapies for adult B-ALL patients and chemotherapy remains first-line therapy despite adverse side effects and poor efficacy. We show that, although the MEK/ERK pathway is activated in B-ALL cells driven by different oncogenes, MEK inhibition does not suppress B-ALL cell growth. However, MEK inhibition synergized with BCL-2/BCL-XL family inhibitors to suppress proliferation and induce apoptosis in B-ALL cells. We show that this synergism is mediated by the pro-apoptotic factor BIM, which is dephosphorylated as a result of MEK inhibition, allowing it to bind to and neutralize MCL-1, thereby enhancing BCL-2/BCL-XL inhibitor-induced cell death. This cooperative effect is observed in B-ALL cells driven by a range of genetic abnormalities and therefore has significant therapeutic potential
Tri-Modality therapy with I-125 brachytherapy, external beam radiation therapy, and short- or long-term hormone therapy for high-risk localized prostate cancer (TRIP): study protocol for a phase III, multicenter, randomized, controlled trial
<p>Abstract</p> <p>Background</p> <p>Patients with high Gleason score, elevated prostate specific antigen (PSA) level, and advanced clinical stage are at increased risk for both local and systemic relapse. Recent data suggests higher radiation doses decrease local recurrence and may ultimately benefit biochemical, metastasis-free and disease-specific survival. No randomized data is available on the benefits of long-term hormonal therapy (HT) in these patients. A prospective study on the efficacy and safety of trimodality treatment consisting of HT, external beam radiation therapy (EBRT), and brachytherapy (BT) for high-risk prostate cancer (PCa) is strongly required.</p> <p>Methods/Design</p> <p>This is a phase III, multicenter, randomized controlled trial (RCT) of trimodality with BT, EBRT, and HT for high-risk PCa (TRIP) that will investigate the impact of adjuvant HT following BT using iodine-125 (<sup>125</sup>I-BT) and supplemental EBRT with neoadjuvant and concurrent HT. Prior to the end of September 2012, a total of 340 patients with high-risk PCa will be enrolled and randomized to one of two treatment arms. These patients will be recruited from more than 41 institutions, all of which have broad experience with <sup>125</sup>I-BT. Pathological slides will be centrally reviewed to confirm patient eligibility. The patients will commonly undergo 6-month HT with combined androgen blockade (CAB) before and during <sup>125</sup>I-BT and supplemental EBRT. Those randomly assigned to the long-term HT group will subsequently undergo 2 years of adjuvant HT with luteinizing hormone-releasing hormone agonist. All participants will be assessed at baseline and every 3 months for the first 30 months, then every 6 months until 84 months from the beginning of CAB.</p> <p>The primary endpoint is biochemical progression-free survival. Secondary endpoints are overall survival, clinical progression-free survival, disease-specific survival, salvage therapy non-adaptive interval, and adverse events.</p> <p>Discussion</p> <p>To our knowledge, there have been no prospective studies documenting the efficacy and safety of trimodality therapy for high-risk PCa. The present RCT is expected to provide additional insight regarding the potency and limitations of the addition of 2 years of adjuvant HT to this trimodality approach, and to establish an appropriate treatment strategy for high-risk PCa.</p> <p>Trial registration</p> <p>UMIN000003992</p
The Mechanism for RNA Recognition by ANTAR Regulators of Gene Expression
ANTAR proteins are widespread bacterial regulatory proteins that have RNA–binding output domains and utilize antitermination to control gene expression at the post-initiation level. An ANTAR protein, EutV, regulates the ethanolamine-utilization genes (eut) in Enterococcus faecalis. Using this system, we present genetic and biochemical evidence of a general mechanism of antitermination used by ANTARs, including details of the antiterminator structure. The novel antiterminator structure consists of two small hairpins with highly conserved terminal loop residues, both features being essential for successful antitermination. The ANTAR protein dimerizes and associates with its substrate RNA in response to signal-induced phosphorylation. Furthermore, bioinformatic searches using this conserved antiterminator motif identified many new ANTAR target RNAs in phylogenetically diverse bacterial species, some comprising complex regulons. Despite the unrelatedness of the species in which they are found, the majority of the ANTAR–associated genes are thematically related to nitrogen management. These data suggest that the central tenets for gene regulation by ANTAR antitermination occur widely in nature to specifically control nitrogen metabolism
Hypoxia-Induced Invadopodia Formation Involves Activation of NHE-1 by the p90 Ribosomal S6 Kinase (p90RSK)
The hypoxic and acidic microenvironments in tumors are strongly associated with malignant progression and metastasis, and have thus become a central issue in tumor physiology and cancer treatment. Despite this, the molecular links between acidic pH- and hypoxia-mediated cell invasion/metastasis remain mostly unresolved. One of the mechanisms that tumor cells use for tissue invasion is the generation of invadopodia, which are actin-rich invasive plasma membrane protrusions that degrade the extracellular matrix. Here, we show that hypoxia stimulates the formation of invadopodia as well as the invasive ability of cancer cells. Inhibition or shRNA-based depletion of the Na+/H+ exchanger NHE-1, along with intracellular pH monitoring by live-cell imaging, revealed that invadopodia formation is associated with alterations in cellular pH homeostasis, an event that involves activation of the Na+/H+ exchange rate by NHE-1. Further characterization indicates that hypoxia triggered the activation of the p90 ribosomal S6 kinase (p90 RSK), which resulted in invadopodia formation and site-specific phosphorylation and activation of NHE-1. This study reveals an unsuspected role of p90RSK in tumor cell invasion and establishes p90RS kinase as a link between hypoxia and the acidic microenvironment of tumors
Unravelling interactions between salt marsh evolution and sedimentary processes in the Wadden Sea (southeastern North Sea)
Salt marshes in the Wadden Sea constitute about 20% of all salt marshes along European coasts. They are of immense importance for coastal protection reasons and as habitat for coastal plant, bird, and invertebrate species. The Wadden Sea is a coastal sedimentary ecosystem in the southeastern North Sea. Besides salt marshes, it is composed of tidal flats, high sands, and sandy shoals, dissected by (sub)tidal channels and located behind barrier islands. Accelerated global sea-level rise (SLR) and changes in storm climate have been identified as possible threats for the persistence of the Wadden Sea ecosystem including its salt marshes. Moreover, it is known that the amount and composition of the sediment available for salt marshes are the most important parameters influencing their ability to adapt to current and future SLR. Assessing these parameters requires a thorough understanding of the sedimentary system of the salt marshes and the adjacent tidal basins. In the present review, we investigate and unravel the interactions of sedimentary processes in the Wadden Sea with the processes taking place on the salt marshes. We identify the most crucial processes and interactions influencing the morphological development of salt marshes in the Wadden Sea. A conceptual model is proposed, intended as a framework for improved understanding of salt marsh development and for incorporation into new salt marsh models. The proposed model may also be applicable to regions other than the Wadden Sea
- …