39 research outputs found

    Genomic architecture of inflammatory bowel disease in five families with multiple affected individuals.

    Full text link
    Currently, the best clinical predictor for inflammatory bowel disease (IBD) is family history. Over 163 sequence variants have been associated with IBD in genome-wide association studies, but they have weak effects and explain only a fraction of the observed heritability. It is expected that additional variants contribute to the genomic architecture of IBD, possibly including rare variants with effect sizes larger than the identified common variants. Here we applied a family study design and sequenced 38 individuals from five families, under the hypothesis that families with multiple IBD-affected individuals harbor one or more risk variants that (i) are shared among affected family members, (ii) are rare and (iii) have substantial effect on disease development. Our analysis revealed not only novel candidate risk variants but also high polygenic risk scores for common known risk variants in four out of the five families. Functional analysis of our top novel variant in the remaining family, a rare missense mutation in the ubiquitin ligase TRIM11, suggests that it leads to increased nuclear factor of kappa light chain enhancer in B-cells (NF-ĪŗB) signaling. We conclude that an accumulation of common weak-effect variants accounts for the high incidence of IBD in most, but not all families we analyzed and that a family study design can identify novel rare variants conferring risk for IBD with potentially large effect size, such as the TRIM11 p.H414Y mutation

    Molecular Pathogenesis of Post-Transplant Acute Kidney Injury: Assessment of Whole-Genome mRNA and MiRNA Profiles.

    Get PDF
    Acute kidney injury (AKI) affects roughly 25% of all recipients of deceased donor organs. The prevention of post-transplant AKI is still an unmet clinical need. We prospectively collected zero-hour, indication as well as protocol kidney biopsies from 166 allografts between 2011 and 2013. In this cohort eight cases with AKI and ten matched allografts without pathology serving as control group were identified with a follow-up biopsy within the first twelve days after engraftment. For this set the zero-hour and follow-up biopsies were subjected to genome wide microRNA and mRNA profiling and analysis, followed by validation in independent expression profiles of 42 AKI and 21 protocol biopsies for strictly controlling the false discovery rate. Follow-up biopsies of AKI allografts compared to time-matched protocol biopsies, further baseline adjustment for zero-hour biopsy expression level and validation in independent datasets, revealed a molecular AKI signature holding 20 mRNAs and two miRNAs (miR-182-5p and miR-21-3p). Next to several established biomarkers such as lipocalin-2 also novel candidates of interest were identified in the signature. In further experimental evaluation the elevated transcript expression level of the secretory leukocyte peptidase inhibitor (SLPI) in AKI allografts was confirmed in plasma and urine on the protein level (p<0.001 and p = 0.003, respectively). miR-182-5p was identified as a molecular regulator of post-transplant AKI, strongly correlated with global gene expression changes during AKI. In summary, we identified an AKI-specific molecular signature providing the ground for novel biomarkers and target candidates such as SLPI and miR-182-5p in addressing AKI

    MicroRNA expression in tumor cells from Waldenstrom's macroglobulinemia reflects both their normal and malignant cell counterparts

    Get PDF
    MicroRNAs (miRNAs) are involved in the regulation of many cellular processes including hematopoiesis, with the aberrant expression of differentiation-stage specific miRNA associated with lymphomagenesis. miRNA profiling has been essential for understanding the underlying biology of many hematological malignancies; however the miRNA signature of the diverse tumor clone associated with Waldenstrom's macroglobulinemia (WM), consisting of B lymphocytes, plasmacytes and lymphoplasmacytic cells, has not been characterized. We have investigated the expression of over 13ā€‰000 known and candidate miRNAs in both CD19+ and CD138+ WM tumor cells, as well as in their malignant and non-malignant counterparts. Although neither CD19+ nor CD138+ WM cells were defined by a distinct miRNA profile, the combination of all WM cells revealed a unique miRNA transcriptome characterized by the dysregulation of many miRNAs previously identified as crucial for normal B-cell lineage differentiation. Specifically, miRNA-9*/152/182 were underexpressed in WM, whereas the expression of miRNA-21/125b/181a/193b/223/363 were notably increased (analysis of variance; P<0.0001). Future studies focusing on the effects of these dysregulated miRNAs will provide further insight into the mechanisms responsible for the pathogenesis of WM

    Mapping genetic variations to three- dimensional protein structures to enhance variant interpretation: a proposed framework

    Get PDF
    The translation of personal genomics to precision medicine depends on the accurate interpretation of the multitude of genetic variants observed for each individual. However, even when genetic variants are predicted to modify a protein, their functional implications may be unclear. Many diseases are caused by genetic variants affecting important protein features, such as enzyme active sites or interaction interfaces. The scientific community has catalogued millions of genetic variants in genomic databases and thousands of protein structures in the Protein Data Bank. Mapping mutations onto three-dimensional (3D) structures enables atomic-level analyses of protein positions that may be important for the stability or formation of interactions; these may explain the effect of mutations and in some cases even open a path for targeted drug development. To accelerate progress in the integration of these data types, we held a two-day Gene Variation to 3D (GVto3D) workshop to report on the latest advances and to discuss unmet needs. The overarching goal of the workshop was to address the question: what can be done together as a community to advance the integration of genetic variants and 3D protein structures that could not be done by a single investigator or laboratory? Here we describe the workshop outcomes, review the state of the field, and propose the development of a framework with which to promote progress in this arena. The framework will include a set of standard formats, common ontologies, a common application programming interface to enable interoperation of the resources, and a Tool Registry to make it easy to find and apply the tools to specific analysis problems. Interoperability will enable integration of diverse data sources and tools and collaborative development of variant effect prediction methods

    Mutations in NOTCH1 Cause Adams-Oliver Syndrome

    Full text link
    Ā© 2014 The American Society of Human Genetics Notch signaling determines and reinforces cell fate in multicellular eukaryotes. Despite the involvement of Notch in many key developmental systems, human mutations in Notch signaling components have mainly been described in disorders with vascular and bone effects. Here, we report five heterozygous NOTCH1 variants in unrelated individuals with Adams-Oliver syndrome (AOS), a rare disease with major features of aplasia cutis of the scalp and terminal transverse limb defects. Using whole-genome sequencing in a cohort of 11 families lacking mutations in the four genes with known roles in AOS pathology (ARHGAP31, RBPJ, DOCK6, and EOGT), we found a heterozygous de novo 85 kb deletion spanning the NOTCH1 5ā€² region and three coding variants (c.1285T>C [p.Cys429Arg], c.4487G>A [p.Cys1496Tyr], and c.5965G>A [p.Asp1989Asn]), two of which are de novo, in four unrelated probands. In a fifth family, we identified a heterozygous canonical splice-site variant (c.743āˆ’1 G>T) in an affected father and daughter. These variants were not present in 5,077 in-house control genomes or in public databases. In keeping with the prominent developmental role described for Notch1 in mouse vasculature, we observed cardiac and multiple vascular defects in four of the five families. We propose that the limb and scalp defects might also be due to a vasculopathy in NOTCH1-related AOS. Our results suggest that mutations in NOTCH1 are the most common cause of AOS and add to a growing list of human diseases that have a vascular and/or bony component and are caused by alterations in the Notch signaling pathway

    Rare variants in neuronal excitability genes influence risk for bipolar disorder

    Full text link
    We sequenced the genomes of 200 individuals from 41 families multiply affected with bipolar disorder (BD) to identify contributions of rare variants to genetic risk. We initially focused on 3,087 candidate genes with known synaptic functions or prior evidence from genome-wide association studies. BD pedigrees had an increased burden of rare variants in genes encoding neuronal ion channels, including subunits of GABAA receptors and voltage-gated calcium channels. Four uncommon coding and regulatory variants also showed significant association, including a missense variant in GABRA6. Targeted sequencing of 26 of these candidate genes in an additional 3,014 cases and 1,717 controls confirmed rare variant associations in ANK3, CACNA1B, CACNA1C, CACNA1D, CACNG2, CAMK2A, and NGF. Variants in promoters and 5' and 3' UTRs contributed more strongly than coding variants to risk for BD, both in pedigrees and in the case-control cohort. The genes and pathways identified in this study regulate diverse aspects of neuronal excitability. We conclude that rare variants in neuronal excitability genes contribute to risk for BD

    Structural insights into Notch receptor-ligand interactions

    No full text
    Pioneering cell aggregation experiments from the Artavanis-Tsakonas group in the late 1980's localized the core ligand recognition sequence in the Drosophila Notch receptor to epidermal growth factor-like (EGF) domains 11 and 12. Since then, advances in protein expression, structure determination methods and functional assays have enabled us to define the molecular basis of the core receptor/ligand interaction and given new insights into the architecture of the Notch complex at the cell surface. We now know that Notch EGF11 and 12 interact with the Delta/Serrate/LAG-2 (DSL) and C2 domains of ligand and that membrane-binding, together with additional protein-protein interactions outside the core recognition domains, are likely to fine-tune generation of the Notch signal. Furthermore, structure determination of O-glycosylated variants of Notch alone or in complex with receptor fragments, has shown that these sugars contribute directly to the binding interface, as well as to stabilizing intra-molecular domain structure, providing some mechanistic insights into the observed modulatory effects of O-glycosylation on Notch activity.Future challenges lie in determining the complete extracellular architecture of ligand and receptor in order to understand (i) how Notch/ligand complexes may form at the cell surface in response to physiological cues, (ii) the role of lipid binding in stabilizing the Notch/ligand complex, (iii) the impact of O-glycosylation on binding and signalling and (iv) to dissect the different pathologies that arise as a consequence of mutations that affect proteins involved in the Notch pathway
    corecore