108 research outputs found

    Equity and career-life balance in marine mammal science?

    Get PDF
    It is widely acknowledged that family and care-giving responsibilities are driving women away from Science, Technology, Engineering, and Mathematics (STEM) fields. Marine mammal science often incurs heavy fieldwork and travel obligations, which make it a challenging career in which to find work-life balance. This opinion piece explores gender equality, equity (the principles of fairness that lead to equality), and work-life balance in science generally and in this field in particular. We aim to (1) raise awareness of these issues among members of the Society for Marine Mammalogy; (2) explore members’ attitudes and viewpoints collected from an online survey and further discussion at a biennial conference workshop in 2015; and (3) make suggestions for members to consider for action, or for the Board of Governors to consider in terms of changes to policy or procedures. Leaks in our pipeline—the attrition of women, and others with additional caring responsibilities—represent an intellectual and economic loss. By striving for equity and promoting work-life balance, we will help to ensure a healthy and productive Society better able to succeed in its aims promoting education, high quality research, conservation, and management of marine mammals.Publisher PDFPeer reviewe

    Acoustic performance of a 50.8-cm (20-inch) diameter variable-pitch fan and inlet. Volume 2: Acoustic data

    Get PDF
    Results from acoustic tests on a 50.8 cm (20 inch) QCSEE Under-the-Wing (UTW) engine, variable pitch fan and inlet simulator are tabulated. Tests were run in both forward and reverse thrust mdoes with a bellmouth inlet, five accelerating inlets (one hardwall and four treated), and four low Mach number inlets (one hardwall and three treated). The 1/3 octave-band acoustic data are presented for the model size on the measured 5.2 m (17.0 ft) arc and also data scaled to full QCSEE size 71:20 on a 152.4 m (500 ft) sideline

    Call repertoire and inferred ecotype presence of killer whales (\u3ci\u3eOrcinus orca\u3c/i\u3e) recorded in the southeastern Chukchi Sea

    Get PDF
    Killer whales occur in the Arctic but few data exist regarding the ecotypes present. The calling behavior differs among ecotypes, which can be distinguished based on pulsed call type, call rate, and bandwidth. In this study, a passive acoustic recorder was deployed 75 km off Point Hope, Alaska, in the southeastern Chukchi Sea to identify which ecotypes were present. A total of 1323 killer whale pulsed calls were detected on 38 of 276 days during the summers (June–August) of 2013–2015. The majority of calls (n = 804, 61%) were recorded in 2013 with the most calls recorded in July (76% of total calls). The calls were manually grouped into six categories: multipart, downsweep, upsweep, modulated, single modulation, and flat. Most detections were flat (n = 485, 37%) or multipart calls (n = 479, 36%), which contained both high and low frequency components. Call comparisons with those reported in the published literature showed similarities with other transient populations in fundamental frequency contour point distribution and median frequency. This study provides the first comprehensive catalog of transient killer whale calls in this region as well as reports on previously undescribed calls

    Humpback Whale Song and Foraging Behavior on an Antarctic Feeding Ground

    Get PDF
    The article of record as published may be located at http://dx.doi.org/10.1371/journal.pone.0051214Reports of humpback whale (Megaptera novaeangliae) song chorusing occuring outside the breeding grounds are becoming more common, but song structure and underwater behavior of individual singers on feeding grounds and migration routes remain unknown. Here, ten humpback whales in the Western Antarctic Peninsula were tagged in May 2010 with non-invasive, suction-cup attached tags to study foraging ecology and acoustic behavior. Background song was identified on all ten records, but additionally, acoustic records of two whales showed intense and continuous singing, with a level of organization and structure approaching that of typical breeding ground song. The songs, produced either by the tagged animalsor close associates, shared phrase types and theme structure with one another, and some song bouts lasted close to an hour. Dive behavior of tagged animals during the time of sound production showed song occurring during periods of active diving, sometimes to depths greater than 100 m. One tag record also contained song in the presence of feeding lunges identified from the behavioral sensors, indicating that mating displays occur in areas worthy of foraging. These data show behavioral flexibility as the humpbacks manage competing needs to continue to feed and prepare for the breeding season during late fall. This may also signify an ability to engage in breeding activities outside of the traditional, warm water breeding ground locations.This material is based upon work supported by the National Science Foundation under Grant No. ANT-07-39483. The authors also greatefully acknowledge funding support from the F.V. Hunt Fellowship of the Acoustical Society of America

    Common humpback whale (Megaptera novaeangliae) sound types for passive acoustic monitoring

    Get PDF
    Author Posting. © Acoustical Society of America, 2011. This article is posted here by permission of Acoustical Society of America for personal use, not for redistribution. The definitive version was published in Journal of the Acoustical Society of America 129 (2011): 476-482, doi:10.1121/1.3504708.Humpback whales (Megaptera novaeangliae) are one of several baleen whale species in the Northwest Atlantic that coexist with vessel traffic and anthropogenic noise. Passive acoustic monitoring strategies can be used in conservation management, but the first step toward understanding the acoustic behavior of a species is a good description of its acoustic repertoire. Digital acoustic tags (DTAGs) were placed on humpback whales in the Stellwagen Bank National Marine Sanctuary to record and describe the non-song sounds being produced in conjunction with foraging activities. Peak frequencies of sounds were generally less than 1 kHz, but ranged as high as 6 kHz, and sounds were generally less than 1 s in duration. Cluster analysis distilled the dataset into eight groups of sounds with similar acoustic properties. The two most stereotyped and distinctive types (“wops” and “grunts”) were also identified aurally as candidates for use in passive acoustic monitoring. This identification of two of the most common sound types will be useful for moving forward conservation efforts on this Northwest Atlantic feeding ground.This paper was funded by the National Oceanic and Atmospheric Administration (NOAA)’s National Marine Sanctuaries Program. It was also sponsored in part by the University of Hawaii Sea Grant College Program, School of Ocean and Earth Science and Technology, under Institutional Grant No. NA05OAR4171048 from the NOAA Office of Sea Grant, Department of Commerce
    corecore