13 research outputs found

    Skin hydration dynamics investigated by electrical impedance techniques in vivo and in vitro

    No full text
    Skin is easily accessible for transdermal drug delivery and also attractive for biomarker sampling. These applications are strongly influenced by hydration where elevated hydration generally leads to increased skin permeability. Thus, favorable transdermal delivery and extraction conditions can be easily obtained by exploiting elevated skin hydration. Here, we provide a detailed in vivo and in vitro investigation of the skin hydration dynamics using three techniques based on electrical impedance spectroscopy. Good correlation between in vivo and in vitro results is demonstrated, which implies that simple but realistic in vitro models can be used for further studies related to skin hydration (e.g., cosmetic testing). Importantly, the results show that hydration proceeds in two stages. Firstly, hydration between 5 and 10 min results in a drastic skin impedance change, which is interpreted as filling of superficial voids in skin with conducting electrolyte solution. Secondly, a subtle impedance change is observed over time, which is interpreted as leveling of the water gradient across skin leading to structural relaxation/changes of the macromolecular skin barrier components. With respect to transdermal drug delivery and extraction of biomarkers; 1 h of hydration is suggested to result in beneficial and stable conditions in terms of high skin permeability and extraction efficiency.Funding Agencies|Knowledge Foundation [20170058]; Gustaf Th Olsson foundation; Biofilms-Research Center for Biointerfaces</p

    A battery-less implantable glucose sensor based on electrical impedance spectroscopy

    No full text
    Abstract The ability to perform accurate continuous glucose monitoring without blood sampling has revolutionised the management of diabetes. Newer methods that can allow measurements during longer periods are necessary to substantially improve patients’ quality of life. This paper presents an alternative method for glucose monitoring which is based on electrical impedance spectroscopy. A battery-less implantable bioimpedance spectroscope was designed, built, and used in an in vivo study on pigs. After a recovery period of 14 days post surgery, a total of 236 subcutaneous bioimpedance measurements obtained from intravenous glucose tolerance tests, with glucose concentration ranges between 77.4 and 523.8 mg/dL, were analyzed. The results show that glucose concentrations estimated by subcutaneous bioimpedance measurements correlate very well to the blood glucose reference values. The pigs were clinically healthy throughout the study, and the postmortem examinations revealed no signs of adverse effects related to the sensor. The implantation of the sensor requires minor surgery. The implant, being externally powered, could in principle last indefinitely. These encouraging results demonstrate the potential of the bioimpedance method to be used in future continuous glucose monitoring systems

    A battery-less implantable glucose sensor based on electrical impedance spectroscopy

    No full text
    The ability to perform accurate continuous glucose monitoring without blood sampling has revolutionised the management of diabetes. Newer methods that can allow measurements during longer periods are necessary to substantially improve patients’ quality of life. This paper presents an alternative method for glucose monitoring which is based on electrical impedance spectroscopy. A battery-less implantable bioimpedance spectroscope was designed, built, and used in an in vivo study on pigs. After a recovery period of 14 days post surgery, a total of 236 subcutaneous bioimpedance measurements obtained from intravenous glucose tolerance tests, with glucose concentration ranges between 77.4 and 523.8 mg/dL, were analyzed. The results show that glucose concentrations estimated by subcutaneous bioimpedance measurements correlate very well to the blood glucose reference values. The pigs were clinically healthy throughout the study, and the postmortem examinations revealed no signs of adverse effects related to the sensor. The implantation of the sensor requires minor surgery. The implant, being externally powered, could in principle last indefinitely. These encouraging results demonstrate the potential of the bioimpedance method to be used in future continuous glucose monitoring systems.This work was partially funded by D.T.R Dermal Therapy Research Inc of Canada and the Swedish Foundation for Strategic Research (SSF) under project number ITM17-0079. </p

    A battery-less implantable glucose sensor based on electrical impedance spectroscopy

    No full text
    The ability to perform accurate continuous glucose monitoring without blood sampling has revolutionised the management of diabetes. Newer methods that can allow measurements during longer periods are necessary to substantially improve patients’ quality of life. This paper presents an alternative method for glucose monitoring which is based on electrical impedance spectroscopy. A battery-less implantable bioimpedance spectroscope was designed, built, and used in an in vivo study on pigs. After a recovery period of 14 days post surgery, a total of 236 subcutaneous bioimpedance measurements obtained from intravenous glucose tolerance tests, with glucose concentration ranges between 77.4 and 523.8 mg/dL, were analyzed. The results show that glucose concentrations estimated by subcutaneous bioimpedance measurements correlate very well to the blood glucose reference values. The pigs were clinically healthy throughout the study, and the postmortem examinations revealed no signs of adverse effects related to the sensor. The implantation of the sensor requires minor surgery. The implant, being externally powered, could in principle last indefinitely. These encouraging results demonstrate the potential of the bioimpedance method to be used in future continuous glucose monitoring systems.This work was partially funded by D.T.R Dermal Therapy Research Inc of Canada and the Swedish Foundation for Strategic Research (SSF) under project number ITM17-0079. </p
    corecore