939 research outputs found

    The Objectivity of Ordinary Life

    Get PDF
    Metaethics tends to take for granted a bare Democritean world of atoms and the void, and then worry about how the human world that we all know can possibly be related to it or justified in its terms. I draw on Wittgenstein to show how completely upside-down this picture is, and make some moves towards turning it the right way up again. There may be a use for something like the bare-Democritean model in some of the sciences, but the picture has no standing as the basic objective truth about the world; if anything has that standing, it is ordinary life. I conclude with some thoughts about how the notion of bare, “thin” perception of non-evaluative reality feeds a number of philosophical pathologies, such as behaviourism, and show how a “thicker”, more value-laden, understanding of our perceptions of the world can be therapeutic against them

    First steps to understand heat tolerance of temperate maize at adult stage: identification of QTL across multiple environments with connected segregating populations

    Get PDF
    KEY MESSAGE: Dents were more heat tolerant than Flints. QTL for heat tolerance with respect to grain yield at field conditions were identified considering multiple populations and environments. ABSTRACT: High temperatures have the potential to cause severe damages to maize production. This study aims to elucidate the genetic mechanisms of heat tolerance under field conditions in maize and the genome regions contributing to natural variation. In our study, heat tolerance was assessed on a multi-environment level under non-controlled field conditions for a set of connected intra- and interpool Dent and Flint populations. Our findings indicate that Dent are more heat tolerant during adult stage than Flint genotypes. We identified 11 quantitative trait loci (QTL) including 2 loci for heat tolerance with respect to grain yield. Furthermore, we identified six heat-tolerance and 112 heat-responsive candidate genes colocating with the previously mentioned QTL. To investigate their contribution to the response to heat stress and heat tolerance, differential expression and sequence variation of the identified candidate genes should be subjected to further research. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s00122-016-2674-6) contains supplementary material, which is available to authorized users

    Entrainment of randomly coupled oscillator networks by a pacemaker

    Get PDF
    Entrainment by a pacemaker, representing an element with a higher frequency, is numerically investigated for several classes of random networks which consist of identical phase oscillators. We find that the entrainment frequency window of a network decreases exponentially with its depth, defined as the mean forward distance of the elements from the pacemaker. Effectively, only shallow networks can thus exhibit frequency-locking to the pacemaker. The exponential dependence is also derived analytically as an approximation for large random asymmetric networks.Comment: 4 pages, 3 figures, revtex 4, submitted to Phys. Rev. Let

    Detection of large magneto-anisotropy of electron spin dephasing in a high-mobility two-dimensional electron system in a [001][001] GaAs/AlGaAs quantum well

    Get PDF
    In time-resolved Faraday rotation experiments we have detected an inplane anisotropy of the electron spin-dephasing time (SDT) in an nn--modulation-doped GaAs/Al0.3_{0.3}Ga0.7_{0.7}As single quantum well. The SDT was measured with magnetic fields of B1B\le 1 T, applied in the [110][110] and [11ˉ0][1\bar{1}0] inplane crystal directions of the GaAs quantum well. For fields along [11ˉ0][1\bar{1}0], we have found an up to a factor of about 2 larger SDT than in the perpendicular direction. Fully microscopic calculations, by numerically solving the kinetic spin Bloch equations considering the D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms, reproduce the experimental findings quantitatively. This quantitative analysis of the data allowed us to determine the relative strengths of Rashba and Dresselhaus terms in our sample. Moreover, we could estimate the SDT for spins aligned in the [110][110] {\em inplane} direction to be on the order of several nanoseconds, which is up to two orders of magnitude larger than that in the perpendicular {\em inplane} direction.Comment: 4 pages, 4 figures, to be published in PR

    Thermodynamic Behavior of a Model Covalent Material Described by the Environment-Dependent Interatomic Potential

    Full text link
    Using molecular dynamics simulations we study the thermodynamic behavior of a single-component covalent material described by the recently proposed Environment-Dependent Interatomic Potential (EDIP). The parameterization of EDIP for silicon exhibits a range of unusual properties typically found in more complex materials, such as the existence of two structurally distinct disordered phases, a density decrease upon melting of the low-temperature amorphous phase, and negative thermal expansion coefficients for both the crystal (at high temperatures) and the amorphous phase (at all temperatures). Structural differences between the two disordered phases also lead to a first-order transition between them, which suggests the existence of a second critical point, as is believed to exist for amorphous forms of frozen water. For EDIP-Si, however, the unusual behavior is associated not only with the open nature of tetrahedral bonding but also with a competition between four-fold (covalent) and five-fold (metallic) coordination. The unusual behavior of the model and its unique ability to simulation the liquid/amorphous transition on molecular-dynamics time scales make it a suitable prototype for fundamental studies of anomalous thermodynamics in disordeered systems.Comment: 48 pages (double-spaced), 13 figure

    Atomic layering at the liquid silicon surface: a first- principles simulation

    Full text link
    We simulate the liquid silicon surface with first-principles molecular dynamics in a slab geometry. We find that the atom-density profile presents a pronounced layering, similar to those observed in low-temperature liquid metals like Ga and Hg. The depth-dependent pair correlation function shows that the effect originates from directional bonding of Si atoms at the surface, and propagates into the bulk. The layering has no major effects in the electronic and dynamical properties of the system, that are very similar to those of bulk liquid Si. To our knowledge, this is the first study of a liquid surface by first-principles molecular dynamics.Comment: 4 pages, 4 figures, submitted to PR

    Suppression of spatiotemporal chaos in the oscillatory CO oxidation on Pt(110) by focused laser light

    Get PDF
    Chemical turbulence in the oscillatory catalytic CO oxidation on Pt(110) is suppressed by means of focused laser light. The laser locally heats the platinum surface which leads to a local increase of the oscillation frequency, and to the formation of a pacemaker which emits target waves. These waves slowly entrain the medium and suppress the spatiotemporal chaos present in the absence of laser light. Our experimental results are confirmed by a detailed numerical analysis of one- and two-dimensional media using the Krischer-Eiswirth-Ertl model for CO oxidation on Pt110. Different control regimes are identified and the dispersion relation of the system is determined using the pacemaker as an externally tunable wave source

    Large Scale Electronic Structure Calculations with Multigrid Acceleration

    Full text link
    We have developed a set of techniques for performing large scale ab initio calculations using multigrid accelerations and a real-space grid as a basis. The multigrid methods permit efficient calculations on ill-conditioned systems with long length scales or high energy cutoffs. The technique has been applied to systems containing up to 100 atoms, including a highly elongated diamond cell, an isolated C60_{60} molecule, and a 32-atom cell of GaN with the Ga d-states in valence. The method is well suited for implementation on both vector and massively parallel architectures.Comment: 4 pages, 1 postscript figur

    Dependence of spin dephasing on initial spin polarization in a high-mobility two-dimensional electron system

    Get PDF
    We have studied the spin dynamics of a high-mobility two-dimensional electron system in a GaAs/Al_{0.3}Ga_{0.7}As single quantum well by time-resolved Faraday rotation and time-resolved Kerr rotation in dependence on the initial degree of spin polarization, P, of the electrons. By increasing the initial spin polarization from the low-P regime to a significant P of several percent, we find that the spin dephasing time, T2T_2^\ast, increases from about 20 ps to 200 ps; Moreover, T2T_2^\ast increases with temperature at small spin polarization but decreases with temperature at large spin polarization. All these features are in good agreement with theoretical predictions by Weng and Wu [Phys. Rev. B {\bf 68}, 075312 (2003)]. Measurements as a function of spin polarization at fixed electron density are performed to further confirm the theory. A fully microscopic calculation is performed by setting up and numerically solving the kinetic spin Bloch equations, including the D'yakonov-Perel' and the Bir-Aronov-Pikus mechanisms, with {\em all} the scattering explicitly included. We reproduce all principal features of the experiments, i.e., a dramatic decrease of spin dephasing with increasing PP and the temperature dependences at different spin polarizations.Comment: 8 pages, 8 figures, to be published in PR

    Cognitive Computation sans Representation

    Get PDF
    The Computational Theory of Mind (CTM) holds that cognitive processes are essentially computational, and hence computation provides the scientific key to explaining mentality. The Representational Theory of Mind (RTM) holds that representational content is the key feature in distinguishing mental from non-mental systems. I argue that there is a deep incompatibility between these two theoretical frameworks, and that the acceptance of CTM provides strong grounds for rejecting RTM. The focal point of the incompatibility is the fact that representational content is extrinsic to formal procedures as such, and the intended interpretation of syntax makes no difference to the execution of an algorithm. So the unique 'content' postulated by RTM is superfluous to the formal procedures of CTM. And once these procedures are implemented in a physical mechanism, it is exclusively the causal properties of the physical mechanism that are responsible for all aspects of the system's behaviour. So once again, postulated content is rendered superfluous. To the extent that semantic content may appear to play a role in behaviour, it must be syntactically encoded within the system, and just as in a standard computational artefact, so too with the human mind/brain - it's pure syntax all the way down to the level of physical implementation. Hence 'content' is at most a convenient meta-level gloss, projected from the outside by human theorists, which itself can play no role in cognitive processing
    corecore