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Entrainment by a pacemaker, representing an element with a higher frequency, is numerically
investigated for several classes of random networks which consist of identical phase oscillators. We
find that the entrainment frequency window of a network decreases exponentially with its depth, defined
as the mean forward distance of the elements from the pacemaker. Effectively, only shallow networks can
thus exhibit frequency locking to the pacemaker. The exponential dependence is also derived analytically
as an approximation for large random asymmetric networks.
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Pacemakers are wave sources in distributed oscillatory
systems typically associated with a local group of elements
having a higher oscillation frequency. Target patterns,
generated by pacemakers, were the first complex wave
patterns observed in the Belousov-Zhabotinsky system
[1]. Pacemakers play an important role in the functioning
of the heart [2] and in the collective behavior of
Dictyostelium discoideum [3]. They are also observed in
large-scale ecosystems [4]. In addition to pacemakers pro-
duced by local heterogeneities in the medium [5], self-
organized pacemakers in uniform birhythmic media have
been theoretically studied [6]. While the majority of re-
lated investigations have so far been performed for systems
with local diffusive coupling between the elements, pace-
makers can also operate in oscillator networks with com-
plex connection topologies. The circadian rhythm in mam-
mals is a daily variation of 24 h that regulates basic physi-
ological processes in such animals [7]. It is produced by a
complex network of neurons forming the so-called supra-
chiasmatic nucleus (SCN) [8]. As recently shown, this os-
cillator network undergoes spontaneous synchronization in
the absence of any environmental input, but its intrinsic
synchronization period is then significantly longer than
24 h [9]. Therefore, the actual shorter rhythm results
from the environmental entrainment and must be exter-
nally imposed. The entrainment is mediated by direct
photic inputs from eyes into the SCN, which undergo
periodic daily variation. However, it is known that only a
distinct subset of neurons in this network is directly influ-
enced by photic inputs [10]. Hence, functioning of this
particular neural system is crucially dependent on the
ability of the entire complex network to become entrained
by an external pacemaker. Analogous behavior can also
be expected, for example, in heterogeneous arrays of glob-
ally coupled electrochemical oscillators where synchro-
nization and entrainment have been experimentally dem-
onstrated [11].

To understand the operation of pacemakers in networks
with complex connection topologies, the action of a pace-
maker in a random oscillator network should first be in-

vestigated. In this Letter, networks of identical phase
oscillators with random connections are considered. A
pacemaker is introduced as a special element whose oscil-
lations have a higher frequency and are not influenced by
the rest of the system. Depending on the pacemaker fre-
quency and the strength of coupling, the pacemaker can
entrain the entire network, so that the frequencies of all its
elements become equal to that of the pacemaker. We find
that the entrainment window decreases exponentially with
the depth of a network, defined as the mean forward
distance of its elements from a pacemaker, and thus only
shallow networks can effectively be entrained. This result
is confirmed in numerical simulations for several different
classes of random networks, including small-world graphs.
It is further analytically derived as an approximation for
random networks with asymmetric connections.

We consider a system of N � 1 phase oscillators, one of
them being a pacemaker. The model is given by a set of
evolution equations [12] for the oscillator phases �i and
the pacemaker phase �0,

_�i � !�
�
pN

XN

j�1

Aij sin��i ��j� �	Bi sin��i ��0�;

_�0 � !� �!: (1)

The topology of network connections is determined by the
adjacency matrix A whose elements Aij are either 1 or 0.
The element with i � 0 is special and represents a pace-
maker. Its frequency is increased by �!with respect to the
frequency ! of all other oscillators [13]. The pacemaker is
acting on a randomly chosen subset of N1 elements, speci-
fied by Bi taking values 1 or 0. The total number of
connections to the pacemaker, N1 �

P
iBi, is fixed. The

coupling between elements inside the network is charac-
terized by strength �. The strength of coupling from the
pacemaker to the network elements is determined by the
parameter 	. In absence of a pacemaker, such networks
undergo autonomous phase synchronization at the natural
frequency !. Without loss of generality, we put ! � 0.
Moreover, we rescale time as t0 � t�! and introduce
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rescaled coupling strengths �0 � �=�! and 	0 � 	=�!.
After such rescaling, the model takes the form of Eq. (1)
with �! � 1 and ! � 0 (we drop primes in the notations
for the rescaled couplings). In terms of the original model
(1), increasing the rescaled coupling between the elements
is equivalent either to an increase of coupling � or to a
decrease of the relative pacemaker frequency �!.

The presence of a pacemaker imposes hierarchical or-
ganization. For any node i, its distance hwith respect to the
pacemaker is given by the length of the minimum forward
path separating this node from the pacemaker. All N1

elements in the group directly connected to the pacemaker
have distances h � 1, the next elements that are connected
to the elements from this group have distances h � 2, etc.
Thus, the whole network is divided into a set of shells [14],
each characterized by a certain forward distance h from the
pacemaker. The set of numbersNh is an important property
of a network. The depth L of a given network, which is the
mean distance from the pacemaker to the entire network, is
introduced as L � �1=N�

P
hhNh. It should be noticed that

such an ordering of network nodes is based solely on the
forward connections descending down the hierarchy and
does not depend on the distribution of reverse (upward)
connections in the system.

First, we investigated standard random asymmetric net-
works, where independently for all connections Aij � 1
with probability p and Aij � 0 otherwise. Only sparse
random networks with relatively low mean connectivity
p and a small number N1 of elements directly connected to
the pacemaker were considered. Numerical simulations
were performed for the networks of size N � 100 starting
with random initial conditions for the phases of all oscil-
lators. For each oscillator, its effective long-time frequency
!i was computed as !i � T�1��i�t0 � T� ��i�t0�� with
sufficiently large T and t0. The simulations show that the
response of a network to the introduction of a pacemaker
depends on the strength � of coupling between the oscil-
lators. When this coupling is sufficiently large (and cou-
pling 	 to the pacemaker is also sufficiently strong as
assumed below), the pacemaker entrains the whole net-
work (i.e., !i � 1 for all elements i). The frozen relative
phases  i 	 �i ��0 are displayed in Fig. 1. Here, the
elements are sorted according to their hierarchical shells.
Despite random variations, there is a clear correlation
between phases of oscillators and their positions in the
hierarchy. Generally, the phase decreases for deeper shells,
and the phase difference between the neighboring shells
rapidly becomes smaller as deeper shells are considered.
As the coupling strength � is decreased, the entrainment
breaks down at a certain threshold value �cr. Our simula-
tions show that synchronization between the first and the
second shells was almost always the first to break down,
and the frequencies of the second and deeper shells re-
mained equal in most cases for the considered random
networks.

Figure 2 displays in the logarithmic scale the thresholds
�cr for a large set of networks with different depths and

different numbers of elements in the first shell. Each group
with a certain N1 is displayed by using its own symbol.
Every such group generates a cluster of data points.
Correlation between the entrainment threshold and the
network depth is apparent. The distributions inside each
cluster and the accumulation of the clusters yield the
dependence �cr�L� of the entrainment threshold on the
network depth. Note that the statistical variation of the
data becomes larger for deeper networks with larger L
and for smaller pN. Similar dependence was found for
the networks with different mean connectivity p (see in-
set). Remarkably, the observed dependences could be well
approximated numerically by the exponential dependence

�cr / �1� pN�L: (2)

As the second class, asymmetric small-world networks
[15] were considered. To generate them, we first con-
structed a one-dimensional lattice of N elements, where
each element had incoming connections from up to its kth
neighbor (the degree was thus 2k). Then, a randomly
chosen link in the lattice was eliminated and a distant
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FIG. 1 (color online). Phases of elements in the entrained state;
N � 100, p � 0:05, N1 � 3, � � 100, and 	 � 1000.
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FIG. 2 (color online). Dependence of the entrainment thresh-
old on the depth L for an ensemble of random networks with
N � 100 and p � 0:1. In the inset, respective data for networks
with p � 0:06 and 0:2 are plotted. Solid lines are the exponential
functions cp�1� pN�L with appropriate fitting parameters cp.
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connection between two independently randomly chosen
elements was introduced. This construction was repeated
qN times, with the parameter q specifying the randomness
of a network. After that, N1 nodes of the network were
randomly chosen and connected to one additional node
representing the pacemaker. When q was small, the net-
work was close to a lattice and, in this case, we have seen
that stable wave solutions with different winding numbers
were possible, depending on initial conditions (cf. [12,16]).
To avoid this, we chose almost synchronized states as
initial conditions. The entrainment thresholds for such
small-world networks are displayed in Fig. 3 and again
show a clear correlation between �cr and L. The depen-
dence on the depth is approximately linear in lattices (q �
0), but it becomes strongly nonlinear even when small
randomness is introduced. For q � 0:1, the dependence
is already approximately exponential, though the disper-
sion of data is strong. As randomness q is increased, the
dependence approaches that of the standard random net-
works with pN � 2k.

We have also investigated asymmetric scale-free random
networks [17], asymmetric regular random networks
(where every element has exactly the same number of
either incoming or outgoing connections), and symmetric
standard random networks. For all of them, approximately
exponential dependences of the entrainment threshold on
the network depth were observed in a large parameter
region.

The exponential dependence (2) can be approximately
derived for asymmetric random networks with large N and
pN. In the large-size limit, random graphs have locally a
treelike structure [14]. The global tree approximation has
previously been used for determining statistical properties
of random networks [17]. We apply here the same approxi-
mation and assume that the graph of forward connections

extending from the pacemaker node represents a tree, so
that any oscillator has only one incoming connection from
the previous shell. Then the shell populations Nh are given
byNh � N1�pN�h�1 for h � 2; . . . ; H, whereH is the total
number of shells determined by

PH
h�1Nh � N. Because

pN is large, we have Nh � NH ’ N for h < H, and thus
L ’ H. Next, we estimate the numbers mhk of incoming
connections leading from all elements in the kth shell to an
oscillator in the hth shell. By definition of hierarchical
shells, mhk � 0 if k < h� 1. In the tree approximation,
mhk � 1 for k � h� 1. Because most of the population is
concentrated in the last shell, reverse connections from
other shells can be neglected. On average, the number of
reverse connections from the shell H to an oscillator in the
shell h is mhH � pNH. Moreover, the relative statistical
deviation from this average is of order �pN��1=2 and is thus
negligible. Therefore, in this approximation, all oscillators
inside a particular shell have effectively the same number
of connections from other shells, and a state with phase
synchronization inside each shell is possible. In this state,
all oscillators inside a shell have the same phase, i.e., �i �
�h for all oscillators i in a shell h. Under entrainment, the
phases of such a state can be found analytically as a
solution of algebraic equations

�
�
pN

XH

k�h�1

mhk sin��h � �k� � 1 for h � 2; . . . ; n;

�	 sin��1 � �0� �
�
pN

XH

k�2

m1k sin��1 � �k� � 1; (3)

where �0 	 �0. For large pN, we can linearize sin��h �
�k� for h; k  2 in the solution of Eqs. (3) [it can be shown
that �2 � �H is of order O�1=pN�]. Furthermore, using
NH ’ N � Nh for h <H and L ’ H, for h  2 we obtain

sin��h�1 � �h� �
pN
�

�1� pN�L�h: (4)

Eq. (4) determines the phases of oscillators in the consid-
ered synchronized state. Note that the explicit value of the
phase �1 in this state is not needed below.

The entrainment breakdown can, in principle, occur
through destabilization of the synchronized state. Though
the analytical proof of its stability is not yet available,
our numerical simulations show that the synchronous en-
trained state with 0< �h�1 � �h < �=2 is always stable
when it exists. Thus, the breakdown of entrainment in the
considered system takes place in a saddle-node bifurca-
tion, through the disappearance of solutions of Eqs. (3).
This occurs when j sin��h�1 � �h�j � 1 for certain h. For
large enough 	, we always have 0< sin��0 � �1�< 1 (a
sufficient condition is	> 1� �). Among the other terms,
the term sin��1 � �2� is always the largest one. Therefore,
the solution disappears and breakdown occurs when
sin��1 � �2� � 1. Substituting Eq. (4) into this equation
and solving it with respect to �, we finally derive the
dependence (2). Thus, we see that the entrainment break-
down occurs through the loss of frequency locking between

FIG. 3 (color online). Dependence of the entrainment thresh-
old on the depth L for an ensemble of small-world networks with
N � 100, k � 3, various N1, 1 � N1 � 20, and different ran-
domness q. The solid line is the same exponential function as
that fitted to the data with pN � 6�� 2k� in Fig. 2. The dotted
line is linear fitting for the regular lattice (q � 0).
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the first shell and the rest of the network. As seen in Fig. 2,
the analytical dependence for the critical coupling strength,
obtained using the tree approximation, agrees well with the
numerical dependence, even for the networks which are
not very large.

So far we have used the coupling strength which was
rescaled as �! �=�!. Therefore, if the nonscaled cou-
pling strength is fixed, Eq. (2) determines the maximum
�!c at which the entrainment is still possible, �!c /
��1� pN��L. The entrainment by a pacemaker can take
place only if its frequency lies inside the interval
�!;!��!c�.

Thus, the entrainment window decreases exponentially
with the depth of a network. This is the principal result of
our study, which holds not only for standard random net-
works, where the above analytical estimate is available, but
also for small-world graphs and other numerically inves-
tigated random topologies. In practice, it implies that only
shallow random networks with small depths are susceptible
to frequency entrainment.

Our results remain valid when, instead of a pacemaker,
external periodic forcing acts on a subset of elements. We
have checked that the reported strong dependence on the
network depth remains valid for systems with larger net-
work sizes, heterogeneity in frequencies of individual os-
cillators, and several other coupling functions. The study
was performed for coupled phase oscillators which serve as
an approximation for various real oscillator systems, in-
cluding neural networks (see, e.g., [12,18,19]). Its conclu-
sions should be applicable for a broad class of oscillator
networks with random architectures.

Financial support by the Japan Society for Promotion of
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