7 research outputs found

    Epithelial-mesenchymal plasticity determines estrogen receptor positive breast cancer dormancy and epithelial reconversion drives recurrence

    Get PDF
    More than 70% of human breast cancers (BCs) are estrogen receptor α-positive (ER+). A clinical challenge of ER+ BC is that they can recur decades after initial treatments. Mechanisms governing latent disease remain elusive due to lack of adequate in vivo models. We compare intraductal xenografts of ER+ and triple-negative (TN) BC cells and demonstrate that disseminated TNBC cells proliferate similarly as TNBC cells at the primary site whereas disseminated ER+ BC cells proliferate slower, they decrease CDH1 and increase ZEB1,2 expressions, and exhibit characteristics of epithelial-mesenchymal plasticity (EMP) and dormancy. Forced E-cadherin expression overcomes ER+ BC dormancy. Cytokine signalings are enriched in more active versus inactive disseminated tumour cells, suggesting microenvironmental triggers for awakening. We conclude that intraductal xenografts model ER + BC dormancy and reveal that EMP is essential for the generation of a dormant cell state and that targeting exit from EMP has therapeutic potential

    Liquid-Liquid Equilibria in System Benzene-Pyridine-Water

    No full text

    Association of Guideline-Recommended COPD Inhaler Regimens With Mortality, Respiratory Exacerbations, and Quality of Life A Secondary Analysis of the Long-Term Oxygen Treatment Trial

    No full text
    BackgroundAlthough inhaled therapy reduces exacerbations among patients with COPD, the effectiveness of providing inhaled treatment per risk stratification models remains unclear.Research questionAre inhaled regimens that align with the 2017 Global Initiative for Chronic Obstructive Lung Disease (GOLD) strategy associated with clinically important outcomes?Study design and methodsWe conducted secondary analyses of Long-term Oxygen Treatment Trial (LOTT) data. The trial enrolled patients with COPD with moderate resting or exertional hypoxemia between 2009 and 2015. Our exposure was the patient-reported inhaled regimen at enrollment, categorized as either aligning with, undertreating, or potentially overtreating per the 2017 GOLD strategy. Our primary composite outcome was time to death or first hospitalization for COPD. Additional outcomes included individual components of the composite outcome and time to first exacerbation. We generated multivariable Cox proportional hazard models across strata of GOLD-predicted exacerbation risk (high vs low) to estimate between-group hazard ratios for time to event outcomes. We adjusted models a priori for potential confounders, clustered by site.ResultsThe trial enrolled 738 patients (73.4% men; mean age, 68.8 years). Of the patients, 571 (77.4%) were low risk for future exacerbations. Of the patients, 233 (31.6%) reported regimens aligning with GOLD recommendations; most regimens (54.1%) potentially overtreated. During a 2.3-year median follow-up, 332 patients (44.9%) experienced the composite outcome. We found no difference in time to composite outcome or death among patients reporting regimens aligning with recommendations compared with undertreated patients. Among patients at low risk, potential overtreatment was associated with higher exacerbation risk (hazard ratio, 1.42; 95% CI, 1.09-1.87), whereas inhaled corticosteroid treatment was associated with 64% higher risk of pneumonia (incidence rate ratio, 1.64; 95% CI, 1.01-2.66).InterpretationAmong patients with COPD with moderate hypoxemia, we found no difference in clinical outcomes between inhaled regimens aligning with the 2017 GOLD strategy compared with those that were undertreated. These findings suggest the need to reevaluate the effectiveness of risk stratification model-based inhaled treatment strategies
    corecore