3,509 research outputs found

    Validity of a noninvasive estimation of deep body temperature when wearing personal protective equipment during exercise and recovery

    Get PDF
    ©2019 The Authors. Published by BMC. This is an open access article available under a Creative Commons licence. The published version can be accessed at the following link on the publisher’s website: https://doi.org/10.1186/s40779-019-0208-7© 2019 The Author(s). Background: Deep body temperature is a critical indicator of heat strain. However, direct measures are often invasive, costly, and difficult to implement in the field. This study assessed the agreement between deep body temperature estimated from heart rate and that measured directly during repeated work bouts while wearing explosive ordnance disposal (EOD) protective clothing and during recovery. Methods: Eight males completed three work and recovery periods across two separate days. Work consisted of treadmill walking on a 1% incline at 2.5, 4.0, or 5.5 km/h, in a random order, wearing EOD protective clothing. Ambient temperature and relative humidity were maintained at 24 °C and 50% [Wet bulb globe temperature (WBGT) (20.9 ± 1.2) °C] or 32 °C and 60% [WBGT (29.0 ± 0.2) °C] on the separate days, respectively. Heart rate and gastrointestinal temperature (TGI) were monitored continuously, and deep body temperature was also estimated from heart rate (ECTemp). Results: The overall systematic bias between TGI and ECTemp was 0.01 °C with 95% limits of agreement (LoA) of ±0.64 °C and a root mean square error of 0.32 °C. The average error statistics among participants showed no significant differences in error between the exercise and recovery periods or the environmental conditions. At TGI levels of (37.0-37.5) °C, (37.5-38.0) °C, (38.0-38.5) °C, and > 38.5 °C, the systematic bias and ± 95% LoA were (0.08 ± 0.58) °C, (-0.02 ± 0.69) °C, (-0.07 ± 0.63) °C, and (-0.32 ± 0.56) °C, respectively. Conclusions: The findings demonstrate acceptable validity of the ECTemp up to 38.5 °C. Conducting work within an ECTemp limit of 38.4 °C, in conditions similar to the present study, would protect the majority of personnel from an excessive elevation in deep body temperature (> 39.0 °C).This project was financially supported by the Australian Government, managed by the National Security Science & Technology Centre within the Defence Science & Technology Organisation, and the US Government through the Technical Support Working Group within the Combating Terrorism Technical Support Office.Published versio

    Observation of pseudogap behavior in a strongly interacting Fermi gas

    Full text link
    Ultracold atomic Fermi gases present an opportunity to study strongly interacting Fermi systems in a controlled and uncomplicated setting. The ability to tune attractive interactions has led to the discovery of superfluidity in these systems with an extremely high transition temperature, near T/T_F = 0.2. This superfluidity is the electrically neutral analog of superconductivity; however, superfluidity in atomic Fermi gases occurs in the limit of strong interactions and defies a conventional BCS description. For these strong interactions, it is predicted that the onset of pairing and superfluidity can occur at different temperatures. This gives rise to a pseudogap region where, for a range of temperatures, the system retains some of the characteristics of the superfluid phase, such as a BCS-like dispersion and a partially gapped density of states, but does not exhibit superfluidity. By making two independent measurements: the direct observation of pair condensation in momentum space and a measurement of the single-particle spectral function using an analog to photoemission spectroscopy, we directly probe the pseudogap phase. Our measurements reveal a BCS-like dispersion with back-bending near the Fermi wave vector k_F that persists well above the transition temperature for pair condensation

    In situ disposal of crushed concrete waste as void fill material at UK nuclear sites: Leaching behavior and effect of pH on trace element release

    Get PDF
    The leaching behavior of stockpiled crushed concrete waste is important in determining its suitability for in situ disposal at UK nuclear sites. Sand sized particles from surface (0–0.1 m) and subsurface (2.5–2.7 m) samples were composed of silica and calcite grains in a matrix of calcium alumina-silicate hydrate (C-(A)-S-H) with Ca/Si ratios of 0.5 ±0.3 and 0.9 ±0.3 respectively. Calcite content was also higher in surface samples indicating a greater degree of weathering and carbonation. This resulted in lower leachate pH for the surface samples (pH 8–9.6) compared to subsurface samples (pH 10–11.3). The waste displayed a high acid buffering capacity but low alkaline buffering capacity. Element release as a function of pH was similar for surface and sub-surface samples and between different size fractions. Leaching of contaminant metals was close to minimum values at the pH values produced by the crushed concrete but increased by several orders of magnitude at pH 12 (for Al and Pb). Weathering and carbonation during long-term stockpiling, therefore, has a positive impact by producing a waste with stable pH and low metal leaching potential suitable for in-situ disposal as a void fill material

    Behaviour of carbon-14 containing low molecular weight organic compounds in contaminated groundwater under aerobic conditions

    Get PDF
    Short chain carbon-14 (14C) containing organic compounds can be formed by abiotic oxidation of carbides and impurities within nuclear fuel cladding. During fuel reprocessing and subsequent waste storage there is potential for these organic compounds to enter shallow subsurface environments due to accidental discharges. Currently there is little data on the persistence of these compounds in such environments. Four 14C labelled compounds (acetate; formate; formaldehyde and methanol) were added to aerobic microcosm experiments that contained glacial outwash sediments and groundwater simulant representative of the Sellafield nuclear reprocessing site, UK. Two concentrations of each electron donor were used, low concentration (10-5 M) to replicate predicted concentrations from an accidental release and high concentration (10-2 M) to study the impact of the individual electron donor on the indigenous microbial community in the sediment. In the low concentration system only ~5% of initial 14C remained in solution at the end of experiments in contact with atmosphere (250-350 hours). The production of 14CO2(g) (measured after 48 hours) suggests microbially mediated breakdown is the primary removal mechanism for these organic compounds, although methanol loss may have been partially by volatilisation. Highest retention of 14C by the solid fractions was found in the acetate experiment, with 12% being associated with the inorganic fraction, suggesting modest precipitation as solid carbonate. In the high concentration systems only ~5% of intial 14C remains in solution at the end of the experiments for acetate, formate and methanol. In the formaldehyde experiment only limited loss from solution was observed (76% remained in solution). The microbial populations of unaltered sediment and those in the low concentration experiments were broadly similar, with highly diverse bacterial phyla present. Under high concentrations of the organic compounds the abundance of common operational taxonomic units was reduced by 66% and the community structure was dominated by Proteobacteria (particularly Betaproteobacteria) signifying a shift in community structure in response to the electron donor available. The results of this study suggest that many bacterial phyla that are ubiquitous in near surface soils are able to utilise a range of 14C-containing low molecular weight organic substances very rapidly, and thus such substances are unlikely to persist in aerobic shallow subsurface environments

    Coprecipitation of 14C and Sr with carbonate precipitates: The importance of reaction kinetics and recrystallization pathways

    Get PDF
    This study investigated the simultaneous removal of Sr2+ and 14CO32- from an alkaline (pH >12) Ca(OH)2 solution by the precipitation of calcium carbonate. Initial Ca2+:CO32- ratios ranged from 10:1 to 10:100 (mM: mM). Maximum removal of 14C and Sr2+ both occurred in the system containing 10 mM Ca2+ and 1 mM CO32- (99.7% and 98.6% removal, respectively). A kinetic model is provided that describes 14C and Sr removal in terms of mineral dissolution & precipitation reactions. The removal of 14C was achieved during the depletion of the initial TIC in solution, and was subsequently significantly affected by recrystallization of a calcite precipitate from an elongate to isotropic morphology. This liberated >46% of the 14C back to solution. Sr2+ removal occurred as Ca2+ became depleted in solution and was not significantly affected by the recrystallization process. This reaction could form the basis for low cost remediation scheme for 90Sr and 14C in radioactively contaminated waters (<$0.25 reagent cost per m3 treated)

    Enhanced Crystallographic incorporation of Strontium(II) ions to Calcite via Preferential Adsorption at Obtuse growth steps

    Get PDF
    Sr-containing calcium carbonates were precipitated from solutions containing Ca(OH)₂, SrCl₂ and Na₂CO₃ in a reactor where constant solution composition was maintained. The total concentration of divalent ions was same in all experiments, but the Sr/Ca ratio was varied between 0.002 and 0.86, and the pH value was between 12.02 and 12.25. All solutions were oversaturated with respect to calcite (SIcalcite = 1.2-1.5). Calcite was the only product formed at low Sr/Ca ratios, but at Sr/Ca ≄ 0.45 strontianite was detected in some systems. Sr-rich precipitate was observed in both a surface layer on (6.9-6 ”m) rhombic calcite seed crystals and as smaller (> 3.64-1.96 ”m) calcite crystals that were elongated along their C-axis. The degree of crystal elongation increased with the Sr/Ca ratio in those crystals. Precipitates recovered from low Sr/Ca ratio experiments exhibited an XRD spectrum identical to that of rhombic calcite, however the peaks attributed to Sr-containing calcite shifted progressively to lower 2Ξ values with increasing solution Sr/Ca ratio, indicating increased lattice volume. Sr K-edge EXAFS analysis of the precipitates showed that the shift in morphology and lattice volume is accompanied by a change in the local coordination of SrÂČâș in calcite. The Sr-O bond lengths were similar to the Ca-O bond lengths in calcite, but Sr-O coordination increased from 6 fold in crystals containing 0.21 Wt. % Sr, to 8 fold in crystals containing 9.47 Wt. % Sr, and the Sr-Ca coordination decreased from 6 and 6 (for the first and second Sr-Ca shells respectively) to 4 and 1. It is suggested that SrÂČâș undergoes preferential incorporation at obtuse (+) growth sites on the calcite surface due to its large ionic radius (1.13 Å), and this increases the growth rate parallel to the C-axis, resulting in the observed elongation in this direction

    Whole-genome association analysis of treatment response in obsessive-compulsive disorder.

    Get PDF
    Up to 30% of patients with obsessive-compulsive disorder (OCD) exhibit an inadequate response to serotonin reuptake inhibitors (SRIs). To date, genetic predictors of OCD treatment response have not been systematically investigated using genome-wide association study (GWAS). To identify specific genetic variations potentially influencing SRI response, we conducted a GWAS study in 804 OCD patients with information on SRI response. SRI response was classified as 'response' (n=514) or 'non-response' (n=290), based on self-report. We used the more powerful Quasi-Likelihood Score Test (the MQLS test) to conduct a genome-wide association test correcting for relatedness, and then used an adjusted logistic model to evaluate the effect size of the variants in probands. The top single-nucleotide polymorphism (SNP) was rs17162912 (P=1.76 × 10(-8)), which is near the DISP1 gene on 1q41-q42, a microdeletion region implicated in neurological development. The other six SNPs showing suggestive evidence of association (P&lt;10(-5)) were rs9303380, rs12437601, rs16988159, rs7676822, rs1911877 and rs723815. Among them, two SNPs in strong linkage disequilibrium, rs7676822 and rs1911877, located near the PCDH10 gene, gave P-values of 2.86 × 10(-6) and 8.41 × 10(-6), respectively. The other 35 variations with signals of potential significance (P&lt;10(-4)) involve multiple genes expressed in the brain, including GRIN2B, PCDH10 and GPC6. Our enrichment analysis indicated suggestive roles of genes in the glutamatergic neurotransmission system (false discovery rate (FDR)=0.0097) and the serotonergic system (FDR=0.0213). Although the results presented may provide new insights into genetic mechanisms underlying treatment response in OCD, studies with larger sample sizes and detailed information on drug dosage and treatment duration are needed

    Hand pattern indicates prostate cancer risk

    Get PDF
    BACKGROUND: The ratio of digit lengths is fixed in utero, and may be a proxy indicator for prenatal testosterone levels. METHODS: We analysed the right-hand pattern and prostate cancer risk in 1524 prostate cancer cases and 3044 population-based controls. RESULTS: Compared with index finger shorter than ring finger (low 2D : 4D), men with index finger longer than ring finger (high 2D : 4D) showed a negative association, suggesting a protective effect with a 33% risk reduction (odds ratio (OR) 0.67, 95% confidence interval (CI) 0.57-0.80). Risk reduction was even greater (87%) in age group <60 (OR 0.13, 95% CI 0.09-0.21). CONCLUSION: Pattern of finger lengths may be a simple marker of prostate cancer risk, with length of 2D greater than 4D suggestive of lower risk. British Journal of Cancer (2011) 104, 175-177. doi:10.1038/sj.bjc.6605986 www.bjcancer.com Published online 30 November 2010 (C) 2011 Cancer Research U
    • 

    corecore