44,288 research outputs found

    Layering Transitions and Solvation Forces in an Asymmetrically Confined Fluid

    Full text link
    We consider a simple fluid confined between two parallel walls (substrates), separated by a distance L. The walls exert competing surface fields so that one wall is attractive and may be completely wet by liquid (it is solvophilic) while the other is solvophobic. Such asymmetric confinement is sometimes termed a `Janus Interface'. The second wall is: (i) purely repulsive and therefore completely dry (contact angle 180 degrees) or (ii) weakly attractive and partially dry (the contact angle is typically in the range 160-170 degrees). At low temperatures, but above the bulk triple point, we find using classical density functional theory (DFT) that the fluid is highly structured in the liquid part of the density profile. In case (i) a sequence of layering transitions occurs: as L is increased at fixed chemical potential (mu) close to bulk gas--liquid coexistence, new layers of liquid-like density develop discontinuously. In contrast to confinement between identical walls, the solvation force is repulsive for all wall separations and jumps discontinuously at each layering transition and the excess grand potential exhibits many metastable minima as a function of the adsorption. For a fixed temperature T=0.56Tc, where Tc is the bulk critical temperature, we determine the transition lines in the L, mu plane. In case (ii) we do not find layering transitions and the solvation force oscillates about zero. We discuss how our mean-field DFT results might be altered by including effects of fluctuations and comment on how the phenomenology we have revealed might be relevant for experimental and simulation studies of water confined between hydrophilic and hydrophobic substrates, emphasizing it is important to distinguish between cases (i) and (ii).Comment: 16 pages, 13 figure

    Helical Symmetry in Linear Systems

    Full text link
    We investigate properties of solutions of the scalar wave equation and Maxwell's equations on Minkowski space with helical symmetry. Existence of local and global solutions with this symmetry is demonstrated with and without sources. The asymptotic properties of the solutions are analyzed. We show that the Newman--Penrose retarded and advanced scalars exhibit specific symmetries and generalized peeling properties.Comment: 11 page

    The Distribution of some large mammals in Kenya

    Get PDF
    Volume: XXI

    S190 interpretation techniques development and application to New York State water resources

    Get PDF
    The author has identified the following significant results. The program has demonstrated that Skylab imagery can be utilized to regularly monitor eutrophication indices of lakes, such as chlorophyll concentration and photic zone depth. The relationship between the blue to green reflectance ratio and chlorophyll concentration was shown, along with changes in lake properties caused by chlorophyll, lignin, and humic acid using reflectance ratios and changes. A data processing technique was developed for detecting atmospheric fluctuations occurring over a large lake

    Reconstruction of Black Hole Metric Perturbations from Weyl Curvature II: The Regge-Wheeler gauge

    Full text link
    Perturbation theory of rotating black holes is described in terms of the Weyl scalars ψ4\psi_4 and ψ0\psi_0; each satisfying the Teukolsky's complex master wave equation with spin s=2s=\mp2, and respectively representing outgoing and ingoing radiation. We explicitly construct the metric perturbations out of these Weyl scalars in the Regge-Wheeler gauge in the nonrotating limit. We propose a generalization of the Regge-Wheeler gauge for Kerr background in the Newman-Penrose language, and discuss the approach for building up the perturbed spacetime of a rotating black hole. We also provide both-way relationships between waveforms defined in the metric and curvature approaches in the time domain, also known as the (inverse-) Chandrasekhar transformations, generalized to include matter.Comment: 22 pages, no figure

    Two-parameter non-linear spacetime perturbations: gauge transformations and gauge invariance

    Get PDF
    An implicit fundamental assumption in relativistic perturbation theory is that there exists a parametric family of spacetimes that can be Taylor expanded around a background. The choice of the latter is crucial to obtain a manageable theory, so that it is sometime convenient to construct a perturbative formalism based on two (or more) parameters. The study of perturbations of rotating stars is a good example: in this case one can treat the stationary axisymmetric star using a slow rotation approximation (expansion in the angular velocity Omega), so that the background is spherical. Generic perturbations of the rotating star (say parametrized by lambda) are then built on top of the axisymmetric perturbations in Omega. Clearly, any interesting physics requires non-linear perturbations, as at least terms lambda Omega need to be considered. In this paper we analyse the gauge dependence of non-linear perturbations depending on two parameters, derive explicit higher order gauge transformation rules, and define gauge invariance. The formalism is completely general and can be used in different applications of general relativity or any other spacetime theory.Comment: 22 pages, 3 figures. Minor changes to match the version appeared in Classical and Quantum Gravit

    Unreasonable mistake in self-defence: Lieser v HM Advocate

    Get PDF

    Challenging the weak cosmic censorship conjecture with charged quantum particles

    Get PDF
    Motivated by the recent attempts to violate the weak cosmic censorship conjecture for near-extreme black-holes, we consider the possibility of overcharging a near-extreme Reissner-Nordstr\"om black hole by the quantum tunneling of charged particles. We consider the scattering of spin-0 and spin-1/2 particles by the black hole in a unified framework and obtain analytically, for the first time, the pertinent reflection and transmission coefficients without any small charge approximation. Based on these results, we propose some gedanken experiments that could lead to the violation of the weak cosmic censorship conjecture due to the (classically forbidden) absorption of small energy charged particles by the black hole. As for the case of scattering in Kerr spacetimes, our results demonstrate explicitly that scalar fields are subject to (electrical) superradiance phenomenon, while spin-1/2 fields are not. Superradiance impose some limitations on the gedanken experiments involving spin-0 fields, favoring, in this way, the mechanisms for creation of a naked singularity by the quantum tunneling of spin-1/2 charged fermions. We also discuss the implications that vacuum polarization effects and quantum statistics might have on these gedanken experiments. In particular, we show that they are not enough to prevent the absorption of incident small energy particles and, consequently, the formation of a naked singularity.Comment: 9 pages; Final version to appear in PR

    The Measure Problem in Cosmology

    Full text link
    The Hamiltonian structure of general relativity provides a natural canonical measure on the space of all classical universes, i.e., the multiverse. We review this construction and show how one can visualize the measure in terms of a "magnetic flux" of solutions through phase space. Previous studies identified a divergence in the measure, which we observe to be due to the dilatation invariance of flat FRW universes. We show that the divergence is removed if we identify universes which are so flat they cannot be observationally distinguished. The resulting measure is independent of time and of the choice of coordinates on the space of fields. We further show that, for some quantities of interest, the measure is very insensitive to the details of how the identification is made. One such quantity is the probability of inflation in simple scalar field models. We find that, according to our implementation of the canonical measure, the probability for N e-folds of inflation in single-field, slow-roll models is suppressed by of order exp(-3N) and we discuss the implications of this result.Comment: 22 pages, 6 figures. Revised version with clarifying remarks on meaning of adopted measure, extra references and minor typographical correction

    NASA/RAE collaboration on nonlinear control using the F-8C digital fly-by-wire aircraft

    Get PDF
    Design procedures are reviewed for variable integral control to optimize response (VICTOR) algorithms and results of preliminary flight tests are presented. The F-8C aircraft is operated in the remotely augmented vehicle (RAV) mode, with the control laws implemented as FORTRAN programs on a ground-based computer. Pilot commands and sensor information are telemetered to the ground, where the data are processed to form surface commands which are then telemetered back to the aircraft. The RAV mode represents a singlestring (simplex) system and is therefore vulnerable to a hardover since comparison monitoring is not possible. Hence, extensive error checking is conducted on both the ground and airborne computers to prevent the development of potentially hazardous situations. Experience with the RAV monitoring and validation procedures is described
    corecore