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Motivated by the recent attempts to violate the weak cosmic censorship conjecture for near-extreme

black holes, we consider the possibility of overcharging a near-extreme Reissner-Nordström black hole by

the quantum tunneling of charged particles. We consider the scattering of spin-0 and spin- 12 particles by

the black hole in a unified framework and obtain analytically, for the first time, the pertinent reflection and

transmission coefficients without any small charge approximation. Based on these results, we propose

some gedanken experiments that could lead to the violation of the weak cosmic censorship conjecture

due to the (classically forbidden) absorption of small energy charged particles by the black hole. As for

the case of scattering in Kerr spacetimes, our results demonstrate explicitly that scalar fields are subject to

(electrical) superradiance phenomenon, while spin- 12 fields are not. Superradiance impose some limita-

tions on the gedanken experiments involving spin-0 fields, favoring, in this way, the mechanisms for

creation of a naked singularity by the quantum tunneling of spin- 12 charged fermions. We also discuss the

implications that vacuum polarization effects and quantum statistics might have on these gedanken

experiments. In particular, we show that they are not enough to prevent the absorption of incident small

energy particles and, consequently, the formation of a naked singularity.
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I. INTRODUCTION

The weak cosmic censorship conjecture (WCCC), pro-
posed byRoger Penrose in 1969, asserts that any singularity
originated from gravitational collapse must be hidden in-
side the event horizon of a black hole [1]. Even though the
WCCC is a necessary condition to guarantee the predict-
ability of classical General Relativity, its validity remains
an open question. Since it has been proposed, numerous
classical results have given strong support to the conjecture
[2,3]. For example, if the WCCC is false, then it would be
natural to expect that the formation of a black hole in
gravitational collapse would be a nongeneric outcome.
However, the fact that stationary black holes are stable
under linear perturbations provides good evidence in favor
of the conjecture. Another typical test of the WCCC con-
sists on gedanken experiments trying to destroy the event
horizon of a black hole and consequently exposing its inner
singularity to an outside observer. These thought experi-
ments are based on the uniqueness theorems that assert that
all stationary black hole solutions of the Einstein-Maxwell
equations are characterized by three conserved parameters:
the gravitational mass M, the electric charge Q and the
angular momentum J, which satisfy (we assume geome-
trized units, so that c ¼ G ¼ ℏ ¼ 1)

M2 � Q2 þ
�
J

M

�
2
: (1)

Solutions whose parameters do not satisfy (1) are generi-
cally dubbed naked singularities. When the equality holds,
the black hole is called extreme. We call a black hole near-
extreme if 0<M2 �Q2 � ðJ=MÞ2 � M2.
The basic idea behind the most common gedanken ex-

periments is to make a black hole absorb a test particle with
enough charge and/or angular momentum so that condition
(1) ceases to be valid. Wald [2] has shown that, if the black
hole is initially extreme, its event horizon is always pre-
served because the particle total energy required to surpass
the potential barrier (created by the interaction particle-
hole) more than compensates the increase in charge and/or
angular momentum. We can also conclude from Wald’s
pioneering work that quasistationary processes cannot be
used to destroy the event horizon of a black hole since, in
such processes, the black hole would be arbitrarily close to
extremality before becoming a naked singularity. Some
other classical analysis, however, indicate that a violation
of the WCCC is possible if we start with a near-extreme
black hole but use nonstationary processes instead [4–7]
(see also Ref. [8]). Since the destruction of the event
horizon, in these cases, occurs due to feeble effects beyond
the linear first approximation, a way to avoid the formation
of naked singularities might be to consider higher order
effects, e.g. self-energy corrections of the particle’s total
energy [4–6,9,10].
Some interesting recent attempts to destroy the event

horizon are based on quantum tunneling of particles into
near-extreme black holes. The original idea, by Matsas and
Silva [11], is based on the fact that, due to thewave-particle
duality, the tunneling probability can be nonzero even if the
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particle total energy is smaller than the height of the
potential barrier, indicating a possible violation of the
WCCC. However, since we lack a complete description
of the quantum gravity regime, a final conclusion cannot
yet be obtained, see Refs. [9–14] for further details and
considerations.

So far, only neutral particles have been treated from this
quantum perspective. In this paper, we will consider the
tunneling process of charged spin-0 and spin- 12 particles

into a charged black hole. We set up a unified framework
for describing scattering processes of these particles by
Reissner-Nordström (J ¼ 0) black holes and evaluate
analytically the pertinent transmission and reflection coef-
ficients for all possible values of charge. To the best of our
knowledge, this has only been done before in the limit of
small charges, see Refs. [15,16]. The calculations are
performed in the limit of interest for violating the
WCCC: the limit of small energies for incident massless
particles. Based on these scattering processes, we propose
some gedanken experiments that would be able, in princi-
ple, to violate the WCCC due to quantum tunneling of
charged particles with very small energies (not sufficient
to preserve (1) after the absorption by the black hole).
Interestingly enough, we have, as for the case of Kerr
spacetimes, that spin- 12 fermions are not subject to the

(electrical) superradiance phenomenon, suggesting that
such fermions are the best candidates for the creation of
naked singularities in gedanken experiments involving
quantum tunneling processes. In fact, we will show that
superradiance effectively makes more difficult the forma-
tion of a naked singularity by the absorption of a scalar
charged particle by the black hole. We also consider some
vacuum polarization and quantum statistics effects that
might influence these processes, and we show that they
are not enough to prevent the formation of a naked
singularity.

II. CHARGED FIELDS AROUND A
REISSNER-NORDSTRÖM BLACK HOLE

A nonrotating charged black hole of massM and charge
Q corresponds to the Reissner-Nordström (RN) space-
time. By using spherical coordinates, the RN metric can
be cast as

ds2 ¼ ��

r2
dt2 þ r2

�
dr2 þ r2ðd�2 þ sin2�d’2Þ; (2)

where

� ¼ r2 � 2MrþQ2 ¼ ðr� rþÞðr� r�Þ: (3)

The roots of�, denoted by rþ and r�, are, respectively, the
event horizon and the Cauchy horizon of the black hole.
Notice that the extreme case corresponds to rþ ¼ r�,
whereas for a naked singularity, i.e. solutions for which
condition (1) does not hold, � has no real root. The only
nonvanishing component of the electromagnetic potential

A� for the RN metric is A0 ¼ �Q=r. Charged spin-0 and

spin- 12 fields on the RN metric (2) can be described effec-

tively in the unified framework that we present here.

A. Massless charged scalar field

A massless charged scalar field propagating in the RN
background is described by the usual Klein-Gordon
equation [17],

ðr� � iqA�Þðr� � iqA�Þ� ¼ 0; (4)

where q stands for the electric charge of the scalar field.
Note that the usual covariant derivative operator has been
replaced by r� � iqA� to include the minimal coupling

between the RN electromagnetic potential and the charge
of the field. This equation can be easily separated in the RN
metric if we consider the ansatz

� ¼ e�i!teim’S0ð�ÞR0ðrÞ: (5)

The resulting radial and angular equations will be given by
the forthcoming master equations (17) and (18) with s ¼ 0.

B. Massless charged spin- 12 field

In the Newman-Penrose formalism, the wave function
describing a massless charged spin- 12 field is represented

by a pair of spinors, PA and �QA, which obey the Dirac
equations

��
AB0 ðr� � iqA�ÞPA ¼ 0; (6)

��
AB0 ðr� þ iqA�ÞQA ¼ 0; (7)

where��
AB0 stands for the generalizations of the Pauli spin

matrices called Infeld-van der Waerden symbols [18].
Minimal coupling is also assumed in this case. The follow-
ing transformations,

P0 ¼ R�ð1=2ÞðrÞS�ð1=2Þð�Þ
r

e�i!teim’; (8)

P1 ¼ Rþð1=2ÞðrÞSþð1=2Þð�Þe�i!teim’; (9)

�Q 10 ¼ Rþð1=2ÞðrÞS�ð1=2Þð�Þe�i!teim’ ; (10)

�Q 00 ¼ �R�ð1=2ÞðrÞSþð1=2Þð�Þ
r

e�i!teim’; (11)

can be used to separate the Dirac equations (6) and (7). The
resulting expressions are [19,20]

�ð1=2Þ
�
@r � i

K

�

�
R�ð1=2Þ ¼ �

ffiffiffiffi
�

2

s
Rþð1=2Þ; (12)

�ð1=2Þ
�
@r þ i

K

�

�� ffiffiffiffi
�

2

s
Rþð1=2Þ

�
¼ �R�ð1=2Þ; (13)

for the radial part and
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ð@� þm csc�þ 1
2 cot�ÞSþð1=2Þ ¼ ��S�ð1=2Þ; (14)

ð@� �m csc�þ 1
2 cot�ÞS�ð1=2Þ ¼ �Sþð1=2Þ; (15)

for the angular one, where � is a separation constant and

K ¼ !r2 � qQr: (16)

It is possible to eliminate Rþð1=2Þ (or, equivalently, R�ð1=2Þ)
from Eqs. (12) and (13), in order to obtain an equation for
R�ð1=2Þ (or Rþð1=2Þ) only. A similar procedure can be made

for the angular functions. The resulting equations are
given by the master equations (17) and (18) below, with
s ¼ �1=2.

III. THE SCATTERING

The previous radial and angular equations for spin-0 and
spin- 12 particles can be written in a unified manner as single

master equations (analogous to the Teukolsky equations
for uncharged massless fields in the Kerr metric [21]). For
the radial part, one has

��s d

dr

�
�sþ1 dRs

dr

�
þ

�
K2 � 2isðr�MÞK

�
þ 4is!r

� 2isqQ� �s

�
Rs ¼ 0; (17)

where �s is a separation constant, ! is the energy of the
particle and K is given by (16), while for the angular part
we have

1

sin�

d

d�

�
sin�

dSs
d�

�
þ
�
sþ�s� m2

sin2�
�2mscos�

sin2�
�s2cot2�

�
Ss

¼0: (18)

Analogously to the Teukolsky equations, the fact that the
solutions of the angular equation (18) must be regular at
� ¼ 0 and � ¼ �, transforms (18) into a Sturm-Liouville
problem for the separation constant �s (which differs from
the separation constant �). The eigenfunctions which solve
the problem are the spin-weighted spherical harmonics

sY
m
j , with corresponding eigenvalues given by �s¼ðj�sÞ

(jþsþ1) [22]. The quantities �j‘� jsk � j � ‘þ jsj,
‘, and �‘ � m � ‘ are, respectively, the total, orbital and
azimuthal angular momenta of the particle. Defining a
new (tortoise) radial coordinate r� by dr�=dr ¼ r2=� and

a new function Ys ¼ �s=2rRs, the radial equation (17) can
be written as

d2Ys

dr�
þ Vsðr�ÞYs ¼ 0; (19)

where

Vsðr�Þ ¼ �

r4

�ðK � isðr�MÞÞ2
�

þ 4is!r� 2isqQ

� jðjþ 1Þ þ s2 � 2
M

r
þ 2

Q2

r2

�
: (20)

Let us now consider the scattering of an incident wave
originated far away from the black hole. This process can
be described by a solution Ys of the wave equation with the
following asymptotic behavior far from the black hole (see
the Appendix for the calculation details)

Ys ! Zin
s r

sþiqQ
� e�i!r� þ Zout

s r�s�iqQ
� eþi!r� ; (21)

and the following asymptotic behavior near the event hori-
zon of the black hole,

Ys ! Ztr
s e

�ðs=2Þððrþ�r�Þ=ðr2þÞÞr��ið!�ðqQ=rþÞÞr� : (22)

The Zin
s , Z

out
s and Ztr

s coefficients correspond, respectively,
to the incident, reflected and transmitted wave amplitudes.
Note that, in the fermionic case, Zþð1=2Þ and Z�ð1=2Þ are not
independent. For such a case, plugging the asymptotic
forms (21) and (22) into Eqs. (12) and (13), we obtain

2i!Zout
þð1=2Þ ¼ �

ffiffiffi
2

p
Zout
�ð1=2Þ; (23)

2
ffiffiffi
2

p
i!Zin

�ð1=2Þ ¼ ��Zin
þð1=2Þ; (24)

�ffiffiffi
2

p Ztr
þð1=2Þ ¼

�
1

2
� 2i�

�
ðrþ � r�Þ1=2Ztr

�ð1=2Þ; (25)

where � is given by

� ¼ r2þ
rþ � r�

�
!� qQ

rþ

�
: (26)

In order to derive relations between the (in/out/tr) coeffi-
cients, we use the fact that the WronskianW of two linearly
independent solutions of the radial equation is independent
of r,

W½Ys; Y
��s�r¼rþ ¼ W½Ys; Y

��s�r¼1: (27)

Using the solution whose asymptotic behavior is given by
Eqs. (21) and (22), we obtain the relation

rs þ ts ¼ 1; (28)

where

r0 ¼
��������Z

out
0

Zin
0

��������
2

; t0 ¼ 1

!

�
!� qQ

rþ

���������Ztr
0

Zin
0

��������
2

; (29)

for the spin-0 case and

rð1=2Þ ¼4
!2

�2

��������
Zout
þð1=2Þ

Zin
þð1=2Þ

��������
2

; tð1=2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rþ�r�

p
r2þ

��������
Ztr
þð1=2Þ

Zin
þð1=2Þ

��������
2

;

(30)

for the spin- 12 case (similar expressions for the case s ¼ � 1
2

can be obtained by substituting Eqs. (23)–(25) into the
expressions above). The quantities rs and ts can be inter-
preted as reflection and transmission coefficients, as con-
firmed by calculations of energy fluxes [19]. (See the
Appendix for the pertinent calculations.) We can see that
t0 can assume negative values when � < 0, i.e., when
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!� qQ

rþ
< 0: (31)

Therefore, similarly to what happens for an uncharged
scalar particle scattered by a Kerr black hole [23], a charged
particle scattered by a RN black hole can effectively extract
energy from it [24]. This phenomenon, generically called
superradiance [25], can be interpreted as a stimulated
emission process [26] for certain particles. Note that the
transmission coefficient for spin- 12 fermions is always

non-negative and, therefore, (electrical) superradiance is
also impossible for such fermions [19], exactly in the
same manner it occurs for the Kerr case [27].

IV. CHALLENGING THE WCCC

We are now ready to investigate the validity of the
WCCC when low energy spin-0 and spin- 12 particles tunnel

into a near-extreme RN black hole. Before the scattering
process starts, the black hole’s mass M and charge Q
satisfy the relation

0<M2 �Q2 � M2: (32)

As a result of the tunneling process, the black hole absorbs
the particle total energy !, charge q and the total angular
momentum L. If we want to destroy the event horizon and
create a naked singularity, the following relation must be
satisfied

f ¼ ðMþ!Þ2 � ðQþ qÞ2 � L2

ðMþ!Þ2 < 0: (33)

In order to make this process possible even for zero angular
momentum particles, we choose Q and q to have the same
sign, which we assume, without loss of generality for the
purposes here, to be positive. (The calculations for the
general case are presented in the Appendix.) In the spinless
case, the particle’s energy cannot be arbitrarily small, oth-
erwise superradiance occurs and, instead of tunneling into
the black hole, the particle extracts energy and charge from
it [24]. From Eq. (29), we conclude that ! must satisfy

!>
qQ

rþ
(34)

if the particle is to be absorbed by the black hole. Choosing
the incident particle to have zero angular momentum (i.e.
‘ ¼ j ¼ 0 and, therefore, L ¼ 0) in order to minimize any
backreaction effect related to rotations, condition (33)
above reduces simply to

!< q� ðM�QÞ: (35)

Note that, similarly to what happens in the classical process
[4], if the black hole is initially extreme, i.e. M ¼ Q, we
have rþ ¼ M and it is impossible to find ! satisfying
Eqs. (34) and (35) simultaneously. However, for a near-
extreme black hole, if the particle’s charge is chosen to be

q >
M�Q

rþ �Q
rþ ¼ rþ �Q

2
; (36)

then it is always possible to find energies ! for which
the inequalities (34) and (35) are satisfied simultaneously.
Notice that the restriction (36) is exactly the same obtained
previously for the classical gedanken experiments involv-
ing charged test bodies, see [4,7]. For the limit of near-
extreme black holes, one has

q > q0 ¼
ffiffiffiffiffiffiffiffi
M"

2

s
þOð"Þ; (37)

where M�Q ¼ " > 0. Let us consider now ! ¼
ðqQ=rþÞ þ �0, with positive �0. Expanding the expression
for f in the lowest orders for �0 and ", we obtain

f ¼ 2ðMþ qÞ�0 � 2q

ffiffiffiffiffiffi
2"

M

s
ðMþ qÞ þOð�2

0; "Þ: (38)

We conclude that if �0 and " are sufficiently small and
satisfy

0< �0 < q

ffiffiffiffiffiffi
2"

M

s
; (39)

with q > q0, then the condition (33) for the creation of a
naked singularity is fulfilled. It is important we keep in
these absorption processes the validity of the test field
approximation, ! � M and q � Q, otherwise a myriad
of backreaction effects could appear preventing effectively
the absorption. Even though it is possible to keep the
deviations of the test field approximation for scalar fields
to a minimum, wewill see that the situation for the fermions
is still more favorable.
For the spin- 12 case, superradiance is absent, and the

particle’s energy! can, in principle, have any value greater
than zero that the tunneling probability will remain posi-
tive even for arbitrarily small q, keeping in this way back-
reaction effects really to the minimum. Let us consider
again ‘ ¼ 0 (and, therefore, L2 ¼ sðsþ 1Þ ¼ 3=4). The
first order expansion of f in terms of ! and " is given by

f � 2

�
Mþ 3

4M3

�
!þ 2ðMþ qÞ"� 2Mq� q2 � 3

4M2
:

(40)

The condition necessary to impose Eq. (33) and, conse-
quently, create a naked singularity is

0<!<
2Mqþ q2 þ 3

4M2 � 2ðMþ qÞ"
2Mþ 3

2M3

: (41)

In contrast with the scalar case, there is no minimal value
for q in order to assure the tunneling. Let us suppose
that the spin- 12 field be a small perturbation (both !,

q � M) and that the black hole is large (M 	 1, assuring
in this way that total angular momentum L2 ¼ 3=4 of the
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fermion is also a small perturbation). In this approxima-
tion, Eq. (41) reads

0<!< q� "; (42)

whose interpretation is rather simple: the only requirement
on the charge q is that it must be enough to overcharge
the black hole. For any charge capable of this, there are
energies for which the incident particles might convert
the black hole into a naked singularity. Spin- 12 fields can

elude the backreaction effects arising from the breakdown
of the test field approximation in the most efficient way.

Vacuum polarization and quantum statistics

Notwithstanding, there is a point of concern for fermi-
ons, raised by Hod in Ref. [12]: the spontaneous polariza-
tion of the vacuum around a black hole and the Pauli
exclusion principle. In order to properly introduce such
effect, let us briefly review some aspects of particle pro-
duction by black holes. In time-dependent spacetimes,
e.g. the gravitational collapse of a spherical body, particle
production occurs because the Hamiltonian describing the
evolution of the field is time-dependent and, therefore a
mixing of positive and negative frequencies can happen.
Since particles and antiparticles are usually described by
positive and negative frequencies, one then says that par-
ticle production has occurred. However, the correct defini-
tion of particle/antiparticle states is given in terms of an
appropriate pseudonorm (in order to be compatible with
the (anti-)commutation relations). For example, for scalar
fields the pseudonorm is naturally defined from the Klein-
Gordon scalar product. When a mode has a positive norm,
it is called a particle state; on the other hand, when a mode
has negative norm, it is called an antiparticle state. Usually,
this definition is equivalent to defining particle states with
respect to the corresponding mode frequency. However, for
charged black holes (and also for rotating ones) this is not
the case. The electromagnetic interaction between the field
and the black hole makes it possible for a mode with given
frequency ! to have positive norm in the vicinity of the
black hole and negative norm far away from it, character-
izing again particle production. In other words, the electric
field is so strong in the vicinity of the black hole that a pair
particle/antiparticle can be created [15,28]. One of them
escapes to infinity, since it has positive energy (as mea-
sured by an observer at infinity) and its charge has the same
sign as the black hole’s charge. The other particle (anti-
particle), has negative energy and is absorbed by the black
hole, discharging it and reducing its electromagnetic en-
ergy. The expected number of particles spontaneously
emitted in each mode is [15,29]

hnð1=2Þi ¼ tð1=2Þ½1þ ex��1; x ¼ !� qQ=rþ
Tbh

; (43)

where Tbh is the temperature of the black hole and the
transmission coefficient tð1=2Þ is given by expression (A17).

For extreme black holes (Tbh ¼ 0) only superradiant
modes (!< qQ=rþ) are emitted. Back to the question of
cosmic censorship, the interesting situation to be consid-
ered is that of a black hole immersed in a thermal radiation
bath which obeys Fermi-Dirac statistics. Including sponta-
neous emission and pure scattering effects, the probability
that one fermion is incident on the black hole without
reflection is [29,30]

pð1=2Þ ¼ tð1=2Þ½1þ e�x��1: (44)

Clearly, if the black hole is initially extreme, the probabil-
ity that a low energy particle (!< qQ=rþ) enters the black
hole vanishes. However, for a near-extreme black hole, the
probability is, albeit small, always positive and, therefore,
the possibility of creating a naked singularity really exists.
Consider, for example, the case of a very low energy
(!M � 1) and low angular momentum (‘ � qM) parti-
cle, incident on a near-extreme black hole. Equation (44)
reduces, in this limit, to

pð1=2Þ ! ex; (45)

where expression (A19) for the corresponding transmis-
sion coefficient tð1=2Þ was used. Note the similarity of this

result with the classical gedanken experiments described in
the introduction, in which a violation of the WCCC can
only happen for near-extreme black holes (and not for
extreme black holes).
It is also interesting to analyze the effect of vacuum

polarization on the tunneling probability of scalar particles
by considering a charged black hole immersed in a thermal
radiation bath obeying Bose-Einstein statistics. In this
case, including spontaneous emission, stimulated emission
and pure scattering effects, the probability that n scalar
particles are incident on the black hole without reflection is
[29,30]

p0 ¼ tn0e
xn ex � 1

ðex � 1þ t0Þnþ1
; (46)

where t0 is given by expression (A17). Since p0 is always
positive for nonextreme black holes, even superradiant
modes have a nonzero probability of being absorbed with-
out any kind of emission/reflection by the black hole.
Therefore, conditions (34) and (35) are replaced by

0<!< nq� ðM�QÞ; (47)

and we conclude that it is possible, in principle, to violate
the WCCC using scalar particles with small charges q,
even though the typical probabilities can be considerably
small. In particular, for a very low energy (!M � 1)
and low angular momentum (‘ � qM) particle, Eq. (46)
reduces to

p0 ! 2�ðnþ1Þexn; (48)

where expression (A19) for the corresponding transmis-
sion coefficient t0 was used. Observe that one could,
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effectively, use several particles (n > 1) with q < " in
order to create a naked singularity. However, the greatest
probability (same order of magnitude of the spin- 12 case) is

obtained for a single particle (n ¼ 1).

V. CONCLUSION

We investigated the possibility of violating the WCCC
by quantum tunneling of charged spin-0 and spin- 12 parti-

cles into a RN black hole. If the black hole configuration is
initially extreme M ¼ Q, the tunneling of particles with
enough charge to create a naked singularity is impossible,
irrespective of the particle spin. This was also the case in
classical gedanken experiments attempting to destroy the
event horizon of a black hole [2,4,6]. However, for a near-
extremeRN black hole, an incident particle can, in principle,
be quantummechanically absorbed and overcharge the black
hole, destroying its event horizon. Besides, we obtained
analytical results, in the small energy limit (M!�1), for
the transmission coefficient of spin-0 and spin- 12 fields scat-

tered by a charged blackhole.As for theKerr spacetime case,
electrical superradiance makes more difficult the formation
of a naked singularity by the absorption of scalar particles.
The situation for the scalar field is similar to the classical
gedanken experiments involving small charged bodies [4,7].
However, for spin- 12 , superradiance is absent, and it is

possible to choose the parameters of the particle in order to
destroy the black hole’s event horizon keeping to aminimum
any backreaction effect related to the breakdown of the test
field approximation. We also showed that vacuum polariza-
tion effects cannot be invoked to elude the creation of a naked
singularity.

The quantum nature of the processes we are proposing
here is fundamental for the violation of the WCCC. Indeed,
Ref. [14] shows, in a very similar context, how different the
quantum tunneling and its classical limit can be. Even
though the particle propagates as a wave due to the
wave-particle duality, it tunnels into the black hole as a
single quantum. For instance, a possible way to include
backreaction effects for scalar particles would be to solve
the coupled Einstein–Klein-Gordon equations,

ðr� � iqA�Þðr� � iqA�Þ� ¼ 0; (49)

G�� ¼ 8�hT��i; (50)

where hT��i is the vacuum expectation value for the stress

energy tensor naturally assigned to the quantum scalar field
�. However, the change from a black hole configuration to
a naked singularity is certainly not a smooth process. Even
this backreaction calculation would be insufficient to de-
termine the fate of the black hole. A definite answer about
the validity of the WCCC will only be possible when a
complete quantum gravity theory becomes available.
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APPENDIX: REFLECTION AND
TRANSMISSION COEFFICIENTS

In order to determine the reflection and transmission
coefficients (29) and (30) in the small energy limitM!�1
of the radial master equation (17), we follow the same
approach used in [31] for the Kerr case. The charges q and
Q here are generic. By introducing

x ¼ r� rþ
rþ � r�

; (A1)

Equation (17) can be written in the limitM! � 1 as

x2ðxþ1Þ2d
2Rs

dx2
þðsþ1Þð2xþ1Þxðxþ1ÞdRs

dx

þ½k2x4þ2ðis�qQÞkx3þðq2Q2��sÞxðxþ1Þ
þGsxþHs�Rs¼0; (A2)

where

k ¼ !ðrþ � r�Þ; (A3)

Gs ¼
�
s

2
� i�� iqQ

�
2 �

�
s

2
þ i�

�
2
; (A4)

Hs ¼
�
s

2

�
2 �

�
s

2
þ i�

�
2
: (A5)

In the limit kx � 1, the first two terms inside the square
brackets inEq. (A2) canbe ignored. The solution correspond-
ing to an ingoing wave near the horizon is given by

Rs ¼ Asð1þ xÞ�sþi�þiqQx�s�i�
2F1ða; b; c;�xÞ; (A6)

where 2F1ða; b; c; xÞ stands for the ordinary hypergeometric
function,

a¼ 1
2�sþ iqQ� i	; b¼ 1

2�sþ iqQþ i	; (A7)

c ¼ 1� s� 2i�; 	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2Q2 �

�
jþ 1

2

�
2

s
; (A8)

and As must be chosen so that Eqs. (23)–(25) are satisfied. In
fact, comparing the asymptotic behavior near the horizon of
Eq. (A6) with Eq. (22), we have

Ztr
s ¼ Asrþðrþ � r�Þð3=2Þsþi�: (A9)

If Eq. (25) is to be satisfied, we conclude that Aþð1=2Þ and
A�ð1=2Þ must be related according to

Aþð1=2Þ
A�ð1=2Þ

¼
ffiffiffi
2

p
�ðrþ � r�Þ

�
1

2
� 2i�

�
: (A10)

Once oneof the parameters is arbitrarily chosen, the other one
is automatically determined by the expression above. For the
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spin-0 case, there is only one parameter, A0, which can be
chosen arbitrarily.

Considering now the limit x 	 1, the last two terms
inside the square brackets in Eq. (A2) can be dropped and
xþ 1 can be simply replaced by x. The corresponding
solution is

Rs ¼ C1x
�ð1=2Þ�sþi	e�ikx

1 1F1ðd1; 1þ 2i	; 2ikxÞ
þ C2x

�ð1=2Þ�s�i	e�ikx
1 1F1ðd2; 1� 2i	; 2ikxÞ;

(A11)

where 1F1ða; b; xÞ stands for the confluent hypergeometric
function and d1 and d2 are given by

d1¼ 1
2�sþ i	� iqQ; d2¼ 1

2�s� i	� iqQ: (A12)

By matching the two solutions, i.e. Eqs. (A6) and (A11), in
the overlap region 1 � x � 1=k, it is possible to deter-
mine the coefficients C1 and C2,

C1¼As

�ð2i	Þ�ðcÞ
�ðbÞ�ðc�aÞ ; C2¼As

�ð�2i	Þ�ðcÞ
�ðaÞ�ðc�bÞ (A13)

Now, comparing the asymptotic form of the confluent
hypergeometric functions 1F1ða; b; xÞ with Eq. (21), we
find

Zin
s

ðrþ�r�Þ1�iqQ
¼C1

�ð1þ2i	Þð�2ikÞ�ð1=2Þþs�i	þiqQ

�ð12þsþ i	þ iqQÞ þC2

�ð1�2i	Þð�2ikÞ�ð1=2Þþsþi	þiqQ

�ð12þs� i	þ iqQÞ : (A14)

Using Eqs. (A9) and (A14), we calculate��������Ztr
s

Zin
s

��������
2¼ r2þðrþ � r�Þ3s�2e��qQð2kÞ1�2s

j�ðcÞj2jFð	Þ þ Fð�	Þj2 ; (A15)

where

Fð	Þ ¼ �ð2i	Þ�ð1þ 2i	Þe�ð�	=2Þ�i	 logð2kÞ

�ðbÞ�ðc� aÞ�ð12 þ sþ iqQþ i	Þ : (A16)

Plugging Eq. (A15) into the expressions (29) and (30), we obtain the formula for the transmission coefficient,

ts ¼ e��qQð2�Þ1�2jsj

j�ð1� jsj � 2i�Þj2jFð	Þ þ Fð�	Þj2 : (A17)

When jþ 1=2> jqQj, 	 is purely imaginary, 	 ¼ i
, with 
 > 0. In the limit of small energies, k ! 0, we can write

ts ¼
e��qQð2�Þ1�2jsjj�ð12 þ jsj þ 
þ iqQÞ�ð12 � jsj þ 
þ iqQÞ�ð12 þ 
� iqQ� 2i�Þj2

j�ð1� jsj � 2i�Þj2½�ð2
Þ�ð1þ 2
Þ�2 ð2kÞ2
; (A18)

plus terms of order Oðk4
Þ or higher. A similar result
was obtained by Gibbons for massive scalar particles in
the particular case jqQj � 1, see Ref. [15]. Sampaio
considered both cases of spin-0 and spin- 12 particles, also
in the same limit, in Ref. [16]. However, when jþ1=2<
jqQj, 	 becomes a real number and, therefore, the trans-
mission coefficient ts becomes a constant part plus an
oscillating term in k. In the extreme case jþ1=2�jqQj,
the constant part dominates. When the charge of the
black hole and the charge of the particle have the same
sign (electric repulsion), the transmission coefficient
reduces to

ts ¼ ð4jsj � 1Þ þOðe��qQÞ; (A19)

On the other hand, when the charges have opposite signs,
the transmission coefficient is given by

ts ¼ 1� �

jqQj
�
jþ 1

2

�
2 þO

�
1

q2Q2

�
: (A20)

The fact that the transmission coefficient approaches unity
in this case is not surprising since the interaction between
the particle and the black hole is attractive. However, inter-
esting results arise when qQ> 0. First, for spin- 12 particles,
even though the electromagnetic force is repulsive, the
transmission coefficient approaches unity. Second, for sca-
lar particles the transmission coefficient approaches �1
(and the reflection coefficient approaches 2), characterizing
a situation of extreme superradiance. These extreme effects
are caused by the fact that the electromagnetic term is the
dominant term in the coefficient q2Q2 � �s of xðxþ 1Þ in
Eq. (A2) and, no matter what the relative sign between the
charges is, it always contributes with a positive sign.
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