735 research outputs found

    Soft functions for generic jet algorithms and observables at hadron colliders

    Get PDF
    We introduce a method to compute one-loop soft functions for exclusive N - jet processes at hadron colliders, allowing for different definitions of the algorithm that determines the jet regions and of the measurements in those regions. In particular, we generalize the N -jettiness hemisphere decomposition of ref. [1] in a manner that separates the dependence on the jet boundary from the observables measured inside the jet and beam regions. Results are given for several factorizable jet definitions, including anti-k T , XCone, and other geometric partitionings. We calculate explicitly the soft functions for angularity measurements, including jet mass and jet broadening, in pp → L + 1 jet and explore the differences for various jet vetoes and algorithms. This includes a consistent treatment of rapidity divergences when applicable. We also compute analytic results for these soft functions in an expansion for a small jet radius R. We find that the small-R results, including corrections up to O(R2), accurately capture the full behavior over a large range of R

    Hybrid configuration content of heavy S-wave mesons

    Full text link
    We use the non-relativistic expansion of QCD (NRQCD) on the lattice to study the lowest hybrid configuration contribution to the ground state of heavy S-wave mesons. Using lowest-order lattice NRQCD to create the heavy-quark propagators, we form a basis of ``unperturbed'' S-wave and hybrid states. We then apply the lowest-order coupling of the quark spin and chromomagnetic field at an intermediate time slice to create ``mixed'' correlators between the S-wave and hybrid states. From the resulting amplitudes, we extract the off-diagonal element of our two-state Hamiltonian. Diagonalizing this Hamiltonian gives us the admixture of hybrid configuration within the meson ground state. The present effort represents a continuation of previous work: the analysis has been extended to include lattices of varying spacings, source operators having better overlap with the ground states, and the pseudoscalar (along with the vector) channel. Results are presented for bottomonium (Υ\Upsilon, ηb\eta_b^{}) using three different sets of quenched lattices. We also show results for charmonium (J/ψJ/\psi, ηc\eta_c^{}) from one lattice set, although we note that the non-relativistic approximation is not expected to be very good in this case.Comment: 9 pages, 7 figures, version to appear in Phys Rev

    Charge-Coupled Device Panoramic Radiography: Area Image Distortion Factors as Selected Image Layer Contours

    Get PDF
    Svrha: Svrha ove studije bila je odrediti svojstva čimbenika izobličenja kontura razlučivanja odabranog sloja slike ortopantomografa OP 100®Instrumentarium Imaging, Tuusula, Finland) kombiniranog sa senzorom vrste CCD (charge-coupled device) tipa (Trophy Radiologie, Vincennes, France). Materijal i metode: Upotrebom mreže kojom se određuje razlučivanje postavljene u razmacima uzduž iskustveno ustanovljenih putanja projekcijskog snopa, konture sloja slike proizvodene ortopantomografom OP 100® modificiranim s osjetilom DigiPan® prethodno su određene za granice razlučivanja od 4,0, 3,0 i 1,5 lp m m 1. Za određivanje čimbenika povećanja uz odabrane granice razlučivanja i vodoravne angulacije snopa bila je upotrebljena jedna šestokutna ispitna naprava, uz uporabu mjernog algoritma koji pripada vlastitom softwareu (programskoj podršci) osjetila DigiPan®. Zatim su upotrebljena vodoravna i okomita povećanja kako be se odredili čimbenici izobličenja za svaku konturu razlučivanja uzduž odabrane angulacije snopa. Rezultati: Uz konture razlučivanja sloja slike od 4 lp m m 1 svi čimbenici izobličenja površine bili su približno jedinica. U području omeđenom tim konturama razlučivanja mjerni je algoritam kompenzirao učinke izobličenja svojstvene povećanju, uzrokovanom geometrijom snopa X-zraka. Uz 1,5 lp m m 1 čimbenici izobličenja površine kretali su se od 1,16 do 1,19 facijalno i 1,14 do 1,22 lingvalno u odnosu prema konturi sloja slike najvećeg razlučivanja. Kontura sloja slike s najvećim prostornim razlučivanjem bila je postavljena lingvalno u odnosu spram geometrijskome središtu žarišta. Zaključak: Upotrebom osjetila DigiPan® i uređaja OP 100® ustanovljene vrijednosti izobličenja odgovaraju vrijednostima već ustanovljenim s pomoću konvencionalnih receptora vrste film/zaslon. U području najvećeg razlučivanja mjerni algoritam programa djelotvorno je kompenzirao izobličenje povećanja projekcionog snopa.Objectives: The aim of this study was to determine the distortion factor characteristics for selected image layer resolution contours of the Orthopantomograph OP 100® (Instrumentarium Imaging, Tuusula, Finland), combined with the DigiPan® (Trophy Radiologie, Vincennes, France) charge-coupled device receptor. Material and Methods: Using a resolution grid positioned at intervals along empirically determined beam projection paths, the image layer contours produced with the DigiPan® modification o f the Orthopantomograph OP 100® had previously been determined for resolution limits o f 4.0, 3.0 and 1.5 Ip m m 1. An hexagonal test device was used to determine the magnification factors at the selected resolution limits and horizontal beam angulations using the resident measurement algorithm o f the DigiPan® proprietary software. The horizontal and vertical magnifications were then used to determine the distortion factors at each resolution contour along selected beam angulations. Results: At the image layer resolution contours of 4 Ip m m 1 all area distortion factors approached unity. Furthermore, in the region bounded by these resolution contours the measurement algorithm compensated for the inherent magnification distortion artefact caused by the X-ray beam geometry. At 1.5 Ip m m 1, the area distortion factors ranged from 1.16 to 1.19 facially and 1.14 to 1.22 lingually to image layer contour of maximum resolution. The image layer contour of maximum spatial resolution was positioned lingually to the geometric center o f the focal trough. Conclusion: Using the DigiPan®, and the op 100® the distortion values conform o f those previously found using conventional film/screen receptors. In the region o f maximum resolution, the software measurement algotirhm effectively compensated for beam- projection magnification distortion

    Precision scans of the pixel cell response of double sided 3D pixel detectors to pion and x-ray beams

    Get PDF
    hree-dimensional (3D) silicon sensors offer potential advantages over standard planar sensors for radiation hardness in future high energy physics experiments and reduced charge-sharing for X-ray applications, but may introduce inefficiencies due to the columnar electrodes. These inefficiencies are probed by studying variations in response across a unit pixel cell in a 55μm pitch double-sided 3D pixel sensor bump bonded to TimePix and Medipix2 readout ASICs. Two complementary characterisation techniques are discussed: the first uses a custom built telescope and a 120GeV pion beam from the Super Proton Synchrotron (SPS) at CERN; the second employs a novel technique to illuminate the sensor with a micro-focused synchrotron X-ray beam at the Diamond Light Source, UK. For a pion beam incident perpendicular to the sensor plane an overall pixel efficiency of 93.0±0.5% is measured. After a 10o rotation of the device the effect of the columnar region becomes negligible and the overall efficiency rises to 99.8±0.5%. The double-sided 3D sensor shows significantly reduced charge sharing to neighbouring pixels compared to the planar device. The charge sharing results obtained from the X-ray beam study of the 3D sensor are shown to agree with a simple simulation in which charge diffusion is neglected. The devices tested are found to be compatible with having a region in which no charge is collected centred on the electrode columns and of radius 7.6±0.6μm. Charge collection above and below the columnar electrodes in the double-sided 3D sensor is observed

    A computational investigation on the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development in diesel injector nozzles

    Full text link
    In this paper a computational study was carried out in order to investigate the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development. With this aim, a large number of injection conditions have been simulated and analysed for 5 different nozzles: four nozzles with different elliptical orifices and one standard nozzle with circular orifices. The four elliptical nozzles differ from each other in the orientation of the major axis (vertical or horizontal) and in the eccentricity value, but keeping the same outlet section in all cases. The comparison has been made in terms of mass flow, momentum flux and other important non-dimensional parameters which help to describe the behaviour of the inner nozzle flow: discharge coefficient (C-d), area coefficient (C-a) and velocity coefficient (C-v). The simulations have been done with a code able to simulate the flow under either cavitating or non-cavitating conditions. This code has been previously validated using experimental measurements over the standard nozzle with circular orifices. The main results of the investigation have shown how the different geometries modify the critical cavitation conditions as well as the discharge coefficient and the effective velocity. In particular, elliptical geometries with vertically oriented major axis are less prone to cavitate and have a lower discharge coefficient, whereas elliptical geometries with horizontally oriented major axis are more prone to cavitate and show a higher discharge coefficient. (C) 2013 Elsevier Ltd. All rights reserved.This work was partly sponsored by "Vicerrectorado de Investigacion, Desarrollo e Innovacion" of the "Universitat Politecnica de Valencia" in the frame of the project "Estudio de la influencia del uso de combustibles alternativos sobre el proceso de inyeccion mediante GRID computing (FUELGRID)", Reference SP20120396 and by "Ministerio de Economia y Competitividad" in the frame of the project "Comprension de la influencia de combustibles no convencionales en el proceso de inyeccion y combustion tipo diesel", reference TRA2012-36932. This support is gratefully acknowledged by the authors.Molina, S.; Salvador Rubio, FJ.; Carreres Talens, M.; Jaramillo, D. (2014). A computational investigation on the influence of the use of elliptical orifices on the inner nozzle flow and cavitation development in diesel injector nozzles. Energy Conversion and Management. 79:114-127. https://doi.org/10.1016/j.enconman.2013.12.015S1141277

    Using a homogeneous equilibrium model for the study of the inner nozzle flow and cavitation pattern in convergent-divergent nozzles of diesel injectors

    Full text link
    [EN] In this paper, the behaviour of the internal nozzle flow and cavitation phenomenon are numerically studied for non-conventional Diesel convergent-divergent nozzles in order to assess their potential in terms of flow characteristics. The used nozzles differs each other in the convergence-divergence level of the orifices but all of them keep the same diameter at the middle of the nozzle orifice. The calculations have been performed using a code previously validated and able to simulate cavitation phenomenon using a homogeneous equilibrium model for the biphasic fluid and using a RANS method (RNG k-ε) as a turbulence modelling approach. For the simulations, one injection pressure and different discharge pressures were used in order to assess the characteristics of nozzles for different Reynolds conditions involving cavitating and non-cavitating conditions. The comparison of the nozzles has been carried out in terms of flow characteristics such as mass flow, momentum flux, effective velocity and other important dimensionless parameters which help to describe the behaviour of the inner flow: discharge coefficient (Cd), area coefficient (Ca) and velocity coefficient (Cv). Additionally, the nozzles have been compared in terms of cavitation inception conditions and cavitation development. The study has shown a high influence on the results of the level of convergence-divergence used in the nozzles. In these nozzles, the vapour originated from cavitation phenomenon came from the throttle of the orifice at the midpoint, and it extended along the whole wall of the divergent nozzle part towards the outlet of the orifice. The main results of the investigation have shown how the different geometries modify the cavitation conditions as well as the discharge coefficient and effective velocity. In particular, the nozzle with highest convergence-divergence level showed cavitation for all the tested conditions while for the nozzle with lowest convergence-divergence level, the cavitation phenomenon could be avoided for high discharge pressures. Additionally, the nozzle with highest convergence-divergence level showed the lowest discharge coefficient values but similar effective injection velocity than the nozzle with lowest level of convergence-divergence level despite of its higher orifice outlet area.This work was partly sponsored by ‘‘Ministerio de Economía y Competitividad’’ of the Spanish Government, in the frame of the project ‘‘Estudio de la interacción chorro-pared em condiciones realistas de motor’’, Reference TRA2015-67679-c2-1- R. This support is gratefully acknowledged by the authors. Mr. Jaramillo’s thesis is supported by ‘‘Conselleria d’Educació, Cultura I Esports’’ of ‘‘Generalitat Valenciana’’ through the program ‘‘Programa VALI+D para investigadores en Formación’’, Reference ACIF/2015/040. The authors would like to express gratitude for the computer resources, technical expertise and assistance provided by the Universidad de Valencia relating to the use of the supercomputer ‘‘Tirant’’.Salvador, FJ.; Jaramillo-Císcar, D.; Romero, J.; Roselló, M. (2017). Using a homogeneous equilibrium model for the study of the inner nozzle flow and cavitation pattern in convergent-divergent nozzles of diesel injectors. Journal of Computational and Applied Mathematics. 309:630-641. https://doi.org/10.1016/j.cam.2016.04.010S63064130

    Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics

    Full text link
    A computational study focused on the inner nozzle flow and cavitation phenomena has been reported in this paper in order to investigate the two most common types of diesel injector nozzles at the present: microsac and valve covered orifice (VCO). The geometrical differences among both types of nozzles are mainly located at the needle seat, upstream of the discharge orifices. In the case of microsac nozzles there is a small volume upstream of the discharge orifices which is not present in VCO nozzles. Due to these geometrical differences among both type of nozzles, differences in the inner flow and the cavitation development have been found and analysed in this research. For the study, two cylindrical nozzles with six orifices and the same outlet diameter have been experimentally characterized in terms of mass flow rate. These measurements have been used to validate the CFD results obtained with the code OpenFOAM used for the analysis of the internal nozzle flow. For the simulations, two meshes that reproduce the microsac and VCO nozzles seat geometry while keeping the same geometry at the orifices have been built. The simulations have been carried out with a code previously validated and able to simulate cavitation phenomena using a homogeneous equilibrium model (HEM) and with RANS approach for the turbulence modelling (RNG k-epsilon). For the computational study, three injection pressures and different geometries simulating different needle lifts have been used. The comparison among nozzles has been made in terms of mass flow, momentum flux and effective velocity and in terms of other non-dimensional parameters which are useful for describing the inner nozzle flow: discharge coefficient (C-d), area coefficient (C-alpha) and velocity coefficient (C-v). The analysis performed by studying and comparing the particularities of the flow in each nozzle has been useful in order to explain the experimental differences found in terms of mass flow rate and critical cavitation conditions. One of the main conclusions of this study is the higher influence of the needle on the mass flow, momentum and injection velocity results for the VCO nozzle as compared to the microsac one. Hence, whereas in the first one these variables scale with the needle lift value, in the second one there is an intermediate needle lift from which they stop being influenced by the presence of the needle. Furthermore, the study has also revealed important differences in the proneness to produce cavitation and its morphology. For the VCO nozzle, cavitation phenomenon occurs only in the upper part of the orifice inlet. However, for the microsac nozzle cavitation appears both at the upper and the lower part of the nozzle orifice entrance.This work was partly sponsored by "Ministerio de Economia y Competitividad" in the frame of the project "Comprension de la influencia de combustibles no convencionales en el proceso de inyeccion y combustion tipo diesel", Reference TRA2012-36932. This support is gratefully acknowledged by the authors.Salvador Rubio, FJ.; Carreres Talens, M.; Jaramillo Císcar, D.; Martínez López, J. (2015). Comparison of microsac and VCO diesel injector nozzles in terms of internal nozzle flow characteristics. Energy Conversion and Management. 103:284-299. https://doi.org/10.1016/j.enconman.2015.05.062S28429910

    A ground-based radar for measuring vertical strain rates and time-varying basal melt rates in ice sheets and shelves

    Get PDF
    The ApRES (autonomous phase-sensitive radio-echo sounder) instrument is a robust, lightweight and relatively inexpensive radar that has been designed to allow long-term, unattended monitoring of ice-shelf and ice-sheet thinning. We describe the instrument and demonstrate its capabilities and limitations by presenting results from three trial campaigns conducted in different Antarctic settings. Two campaigns were ice sheet-based – Pine Island Glacier and Dome C – and one was conducted on the Ross Ice Shelf. The ice-shelf site demonstrates the ability of the instrument to collect a time series of basal melt rates; the two grounded ice applications show the potential to recover profiles of vertical strain rate and also demonstrate some of the limitations of the present system
    corecore