43 research outputs found

    Conjunctive input processing drives feature selectivity in hippocampal CA1 neurons

    Get PDF
    Feature-selective firing allows networks to produce representations of the external and internal environments. Despite its importance, the mechanisms generating neuronal feature selectivity are incompletely understood. In many cortical microcircuits the integration of two functionally distinct inputs occurs nonlinearly through generation of active dendritic signals that drive burst firing and robust plasticity. To examine the role of this processing in feature selectivity, we recorded CA1 pyramidal neuron membrane potential and local field potential in mice running on a linear treadmill. We found that dendritic plateau potentials were produced by an interaction between properly timed input from entorhinal cortex and hippocampal CA3. These conjunctive signals positively modulated the firing of previously established place fields and rapidly induced new place field formation to produce feature selectivity in CA1 that is a function of both entorhinal cortex and CA3 input. Such selectivity could allow mixed network level representations that support context-dependent spatial maps.Howard Hughes Medical InstituteRikagaku Kenkyūjo (Japan

    Integrative Annotation of 21,037 Human Genes Validated by Full-Length cDNA Clones

    Get PDF
    The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Optimization of Computer Software Settings Improves Accuracy of Pulsed-Field Gel Electrophoresis Macrorestriction Fragment Pattern Analysis

    No full text
    Computer-assisted analysis of pulsed-field gel electrophoresis (PFGE) libraries can facilitate comparisons of fragment patterns present on multiple gels. We evaluated the ability of the Advanced Analysis (version 4.01) and Database (version 1.12) modules of the Phoretix gel analysis software package (Nonlinear USA, Inc., Durham, N.C.) to accurately match DNA fragment patterns. Two gels containing 38 lanes of SmaI-digested Enterococcus faecalis OG1RF DNA were analyzed to assess the impact of (i) varying the lane position of the standards, (ii) using gel plugs made at different times, and (iii) normalizing the fragment patterns by using molecular weight (MW) algorithms versus retardation factor (R(f)) algorithms. Two sets of PFGE libraries (one containing SmaI restriction patterns from 62 Enterococcus faecium isolates and the other containing SmaI restriction patterns of 89 Staphylococcus aureus isolates) were analyzed to assess the impact of varying the matching tolerance algorithm (designated as the vector box setting [VBS]) in the Phoretix software. Varying the lane position of standards on a gel and using gel plugs made on different days resulted in different VBSs, although it was not possible to judge whether those differences were statistically significant. Normalization of E. faecalis OG1RF fragment patterns by R(f) and MW methodology yielded no statistically significant differences in variability between the same fragment on different lanes. Suboptimal VBSs decreased the specificity with which related isolates were grouped together in dendrograms. The optimal VBS for analysis of PFGE fragment patterns from E. faecalis isolates differed from that for S. aureus isolates and sometimes was not that recommended by the manufacturer. Thus, computer-assisted analysis of PFGE patterns seemed to compensate for the intra- and intergel variation evaluated in the present study, and optimizing the software for the species to be tested was a critical preliminary step before further PFGE library analysis

    Pulsed-Field Gel Electrophoresis Typing of Oxacillin-Resistant Staphylococcus aureus Isolates from the United States: Establishing a National Database

    No full text
    Oxacillin-resistant Staphylococcus aureus (ORSA) is a virulent pathogen responsible for both health care-associated and community onset disease. We used SmaI-digested genomic DNA separated by pulsed-field gel electrophoresis (PFGE) to characterize 957 S. aureus isolates and establish a database of PFGE patterns. In addition to PFGE patterns of U.S. strains, the database contains patterns of representative epidemic-type strains from the United Kingdom, Canada, and Australia; previously described ORSA clonal-type isolates; 13 vancomycin-intermediate S. aureus (VISA) isolates, and two high-level vancomycin-resistant, vanA-positive strains (VRSA). Among the isolates from the United States, we identified eight lineages, designated as pulsed-field types (PFTs) USA100 through USA800, seven of which included both ORSA and oxacillin-susceptible S. aureus isolates. With the exception of the PFT pairs USA100 and USA800, and USA300 and USA500, each of the PFTs had a unique multilocus sequence type and spa type motif. The USA100 PFT, previously designated as the New York/Tokyo clone, was the most common PFT in the database, representing 44% of the ORSA isolates. USA100 isolates were typically multiresistant and included all but one of the U.S. VISA strains and both VRSA isolates. Multiresistant ORSA isolates from the USA200, -500, and -600 PFTs have PFGE patterns similar to those of previously described epidemic strains from Europe and Australia. The USA300 and -400 PFTs contained community isolates resistant only to β-lactam drugs and erythromycin. Noticeably absent from the U.S. database were isolates with the previously described Brazilian and EMRSA15 PFGE patterns. These data suggest that there are a limited number of ORSA genotypes present in the United States

    Carbapenem Resistance in a Clinical Isolate of Enterobacter aerogenes Is Associated with Decreased Expression of OmpF and OmpC Porin Analogs

    No full text
    We investigated the mechanism of imipenem resistance in Enterobacter aerogenes strain 810, a clinical isolate from the United States for which the imipenem MIC was 16 μg/ml and the meropenem MIC was 8 μg/ml. An imipenem-susceptible revertant, strain 810-REV, was obtained after multiple passages of the strain on nonselective media. For the revertant, the imipenem MIC was ≤1 μg/ml and the meropenem MIC was ≤0.25 μg/ml. Cefepime MICs also decreased from 8 to 1 μg/ml; however, the MICs of ceftazidime (≥128 μg/ml), cefoxitin (≥32 μg/ml), and cefotaxime (≥64 μg/ml) remained the same. The β-lactamase and porin profiles of the parent, the revertant, and carbapenem-susceptible type strain E. aerogenes ATCC 13048 were determined. Strains 810 and 810-REV each produced two β-lactamases with pIs of 8.2 and 5.4. The β-lactamase activities of the parent and revertant were similar, even after induction with subinhibitory concentrations of imipenem. While 810-REV produced two major outer membrane proteins of 42 and 39 kDa that corresponded to Escherichia coli porins OmpC and OmpF, respectively, the parent strain appeared to produce similar quantities of the 39-kDa protein (OmpF) but decreased amounts of the 42-kDa protein (OmpC). When the parent strain was grown in the presence of imipenem, the 42-kDa protein was not detectable by gel electrophoresis. However, Western blot analysis of the outer membrane proteins of the parent and revertant with polyclonal antisera raised to the OmpC and OmpF analogs of Klebsiella pneumoniae (anti-OmpK36 and anti-OmpK35, respectively) showed that strain 810 expressed only the 42-kDa OmpC analog in the absence of imipenem (the 39-kDa protein was not recognized by the anti-OmpF antisera) and neither the OmpC nor the OmpF analog in the presence of imipenem. The OmpC analog is apparently down-regulated in the presence of imipenem; however, 810-REV expressed both OmpC and OmpF analogs. These data suggest that imipenem resistance in E. aerogenes 810 is primarily associated with the lack of expression of the analogs of the OmpC (42-kDa) and OmpF (39-kDa) outer membrane proteins, which also results in decreased susceptibility to meropenem and cefepime

    Testing for Induction of Clindamycin Resistance in Erythromycin-Resistant Isolates of Staphylococcus aureus

    No full text
    Disk diffusion and broth microdilution (BMD) were used to perform clindamycin (CLI) induction testing on 128 selected nonduplicate isolates of Staphylococcus aureus. Disk diffusion testing involved placing CLI and erythromycin (ERY) disks approximately 12 mm apart (measured edge to edge) on a Mueller-Hinton agar plate that had been inoculated with an S. aureus isolate; the plate was then incubated for 16 to 18 h. Two distinct induction phenotypes (labeled D and D(+)) and four noninduction phenotypes (designated as negative [Neg], hazy D zone [HD], resistant [R], and susceptible [S]) were observed in disk diffusion results. A clear, D-shaped zone of inhibition around the CLI disk was designated as the D phenotype and was observed for 21 isolates while a D-shaped zone containing inner colonies growing up to the CLI disk was designated as D(+) (17 isolates). In addition, 10 isolates were CLI susceptible and ERY resistant but were not inducible and showed no blunting of the CLI zone (Neg phenotype). Isolates that were CLI and ERY resistant (constitutive macrolide-lincosamide-streptogramin B resistance) demonstrated either a double zone of inhibition with an inner ring of reduced growth up to the edge of the disks (HD phenotype; 33 isolates) or solid growth around the CLI and ERY disks (R phenotype; 16 isolates). Finally, 31 isolates were susceptible by disk testing to both CLI and ERY (S phenotype). PCR results showed that isolates with a D phenotype harbored ermA, isolates with a D(+) phenotype contained either ermC (16 isolates) or ermA and ermC (one isolate), and all 10 isolates with a Neg phenotype contained msrA. All isolates with an HD or R phenotype harbored at least one erm gene. Isolates showing the D(+) phenotype by disk diffusion were also detected by BMD using a variety of CLI and ERY concentrations; however, isolates with the D phenotype were more difficult to detect by BMD and will likely require optimization of ERY and CLI concentrations in multilaboratory studies to ensure adequate sensitivity. Thus, at present, disk diffusion is the preferred method for testing S. aureus isolates for inducible CLI resistance
    corecore