611 research outputs found
Differential varietal response to zinc foliar sprays in navy beans (Phaseolus vulgaris)
Rain-grown trials were conducted from 1973 to 1975 on the southern Darling Downs to assess the effects on yield of foliar applications of zinc sulphate heptahydrate on five navy bean cultivars. Yield increases of up to 86% were obtained, though varietal responses to zinc application varied markedly. Dry seed beans harvested from zinc sprayed treatments accumulated significantly higher zinc levels than beans from control plots. Severity of zinc deficiency symptoms early in the season correlated significantly with yields obtained at the end of the season
The spectral theorem of many-body Green's function theory when there are zero eigenvalues of the matrix governing the equations of motion
In using the spectral theorem of many-body Green's function theory in order
to relate correlations to commutator Green's functions, it is necessary in the
standard procedure to consider the anti-commutator Green's functions as well
whenever the matrix governing the equations of motion for the commutator
Green's functions has zero eigenvalues. We show that a singular-value
decomposition of this matrix allows one to reformulate the problem in terms of
a smaller set of Green's functions with an associated matrix having no zero
eigenvalues, thus eliminating the need for the anti-commutator Green's
functions. The procedure is quite general and easy to apply. It is illustrated
for the field-induced reorientation of the magnetization of a ferromagnetic
Heisenberg monolayer and it is expected to work for more complicated cases as
well.Comment: 4 pages, 1 figure, accepted for publication in Physical Review B (16.
May 2003
Ultra-fast propagation of Schr\"odinger waves in absorbing media
We identify the characteristic times of the evolution of a quantum wave
generated by a point source with a sharp onset in an absorbing medium. The
"traversal'' or "B\"uttiker-Landauer'' time (which grows linearly with the
distance to the source) for the Hermitian, non-absorbing case is substituted by
three different characteristic quantities. One of them describes the arrival of
a maximum of the density calculated with respect to position, but the maximum
with respect to time for a given position becomes independent of the distance
to the source and is given by the particle's ``survival time'' in the medium.
This later effect, unlike the Hartman effect, occurs for injection frequencies
under or above the cut-off, and for arbitrarily large distances. A possible
physical realization is proposed by illuminating a two-level atom with a
detuned laser
Quantum-wave evolution in a step potential barrier
By using an exact solution to the time-dependent Schr\"{o}dinger equation
with a point source initial condition, we investigate both the time and spatial
dependence of quantum waves in a step potential barrier. We find that for a
source with energy below the barrier height, and for distances larger than the
penetration length, the probability density exhibits a {\it forerunner}
associated with a non-tunneling process, which propagates in space at exactly
the semiclassical group velocity. We show that the time of arrival of the
maximum of the {\it forerunner} at a given fixed position inside the potential
is exactly the traversal time, . We also show that the spatial evolution
of this transient pulse exhibits an invariant behavior under a rescaling
process. This analytic property is used to characterize the evolution of the
{\it forerunner}, and to analyze the role played by the time of arrival,
, found recently by Muga and B\"{u}ttiker [Phys. Rev. A {\bf 62},
023808 (2000)].Comment: To be published in Phys. Rev. A (2002
Pre-existing virus-specific CD8+ T-cells provide protection against pneumovirus-induced disease in mice
Pneumoviruses such as pneumonia virus of mice (PVM), bovine respiratory syncytial virus (bRSV) or human (h)RSV are closely related pneumoviruses that cause severe respiratory disease in their respective hosts. It is well-known that T-cell responses are essential in pneumovirus clearance, but pneumovirus-specific T-cell responses also are important mediators of severe immunopathology. In this study we determined whether memory- or pre-existing, transferred virus-specific CD8 + T-cells provide protection against PVM-induced disease. We show that during infection with a sublethal dose of PVM, both natural killer (NK) cells and CD8 + T-cells expand relatively late. Induction of CD8 + T-cell memory against a single CD8 + T-cell epitope, by dendritic cell (DC)-peptide immunization, leads to partial protection against PVM challenge and prevents Th2 differentiation of PVM-induced CD4 T-cells. In addition, adoptively transferred PVM-specific CD8 + T-cells, covering the entire PVM-specific CD8 + T-cell repertoire, provide partial protection from PVM-induced disease. From these data we infer that antigen-specific memory CD8 + T-cells offer significant protection to PVM-induced disease. Thus, CD8 + T-cells, despite being a major cause of PVM-associated pathology during primary infection, may offer promising targets of a protective pneumovirus vaccine
Tunneling dynamics in relativistic and nonrelativistic wave equations
We obtain the solution of a relativistic wave equation and compare it with
the solution of the Schroedinger equation for a source with a sharp onset and
excitation frequencies below cut-off. A scaling of position and time reduces to
a single case all the (below cut-off) nonrelativistic solutions, but no such
simplification holds for the relativistic equation, so that qualitatively
different ``shallow'' and ``deep'' tunneling regimes may be identified
relativistically. The nonrelativistic forerunner at a position beyond the
penetration length of the asymptotic stationary wave does not tunnel;
nevertheless, it arrives at the traversal (semiclassical or
B\"uttiker-Landauer) time "tau". The corresponding relativistic forerunner is
more complex: it oscillates due to the interference between two saddle point
contributions, and may be characterized by two times for the arrival of the
maxima of lower and upper envelops. There is in addition an earlier
relativistic forerunner, right after the causal front, which does tunnel.
Within the penetration length, tunneling is more robust for the precursors of
the relativistic equation
The McKean-Vlasov Equation in Finite Volume
We study the McKean--Vlasov equation on the finite tori of length scale
in --dimensions. We derive the necessary and sufficient conditions for the
existence of a phase transition, which are based on the criteria first
uncovered in \cite{GP} and \cite{KM}. Therein and in subsequent works, one
finds indications pointing to critical transitions at a particular model
dependent value, of the interaction parameter. We show that
the uniform density (which may be interpreted as the liquid phase) is
dynamically stable for and prove, abstractly, that a
{\it critical} transition must occur at . However for
this system we show that under generic conditions -- large, and
isotropic interactions -- the phase transition is in fact discontinuous and
occurs at some \theta\t < \theta^{\sharp}. Finally, for H--stable, bounded
interactions with discontinuous transitions we show that, with suitable
scaling, the \theta\t(L) tend to a definitive non--trivial limit as
CFRP flexural and shear strengthening technique for RC beams : experimental and numerical research
Near surface mounted (NSM) technique has proved to be a very effective
technique for the flexural strengthening of RC beams. Due to the relatively small
thickness of the concrete cover that several beams present, cutting the bottom arm of
steel stirrups for the installation of NSM laminates might be a possible strategy, whose
implications on the beam’s load carrying capacity need to be assessed. When steel
stirrups are cut, however, the shear resistance can be a concern. This also happens
when a strengthening intervention is carried out to increase the flexural resistance of a
beam, since in certain cases it is also necessary to increase the shear resistance in order
to avoid the occurrence of brittle shear failure. The present work assesses the
effectiveness of a technique that aims to increase both the flexural and shear resistance
of RC beams that have the bottom arm of the steel stirrups cut for the application of
NSM laminates. This assessment is performed by experimental and numerical
research. The main results of the experimental program are presented and analyzed,
and the innovative aspects of a constitutive model implemented in a computer program
are described, being their virtues and deficiencies discussed.The study reported in this paper forms a part of the research program "CUTINEMO - Carbon fiber laminates applied according to the near surface mounted technique to increase the flexural resistance to negative moments of continuous reinforced concrete structures" supported by FCT, PTDC/ECM/73099/2006. The authors wish to acknowledge the support also provided by the S&P, Casais and Artecanter Companies. The second Author acknowledges the grant under the aforementioned research project. The third author acknowledges the financial support of FCT, PhD Grant number SFRH/BD/23326/2005
- …