2,492 research outputs found

    Red deer bone and antler collagen are not isotopically equivalent in carbon and nitrogen.

    Get PDF
    RATIONALE: Bone and antler collagen δ(13) C and δ(15) N values are often assumed to be equivalent when measured in palaeodietary, palaeoclimate and palaeocological studies. Although compositionally similar, bone grows slowly and is remodelled whereas antler growth is rapid and remodelling does not occur. These different patterns of growth could result in isotopic difference within antler and between the two tissue types. Here we test whether red deer (Cervus elaphus) bone and antler δ(13) C and δ(15) N values are equivalent, and whether intra-antler isotopic values are uniform. METHODS: Bone and antler were isotopically analysed from six stags that lived in a temperate maritime climate on the Isle of Rum, Scotland. Multiple antlers from different years were sampled per individual, together with a single bone sample per individual. Up to 12 samples were taken along the length of each antler (total of 25 antlers, 259 samples) so that a chronological record of the isotopic composition during antler growth could be obtained. Collagen was extracted and its δ(13) C and δ(15) N values were measured by continuous-flow isotope ratio mass spectrometry. RESULTS: Intra-antler collagen isotope signatures vary, and show that not all antlers from an individual or a growth year are equivalent in carbon and nitrogen isotopic ratios. δ(15) N values typically increase with distance along antler length, but no overall trend is observed in δ(13) C values. An isotopic offset is visible between bone and antler, with bone δ(13) C and δ(15) N values being higher in most cases. CONCLUSIONS: Bone and antler collagen δ(13) C and δ(15) N values are not isotopically equivalent and are therefore not directly comparable in palaeodietary, palaeoclimate and palaeocological studies. Bone and antler collagen isotopic differences probably relate to differential metabolic processes during the formation of the two tissues. Intra- and inter-antler isotopic variations probably reflect the isotopic composition of an individual's diet rather than physiological parameters, and may have the potential to provide high-resolution individual-specific information in modern and ancient cervid populations

    Stable isotopes confirm the Banwell Bone Cave Mammal Assemblage Zone represents an MIS 5 fauna

    Get PDF
    The position of the Banwell Bone Cave mammal assemblage zone (MAZ) in the mammalian biostratigraphy of the British Isles has been the focus of debate for decades. Dominated by fauna typical of cold environments it was originally linked to the marine oxygen isotope stage (MIS) 4 stadial (ca. 72–59 ka). Subsequently it was argued that the Banwell Bone Cave MAZ more likely relates to the temperate interstadial of MIS 5a (ca. 86–72 ka). It is envisioned that “cold fauna” such as bison and reindeer moved into Britain during stadial MIS 5b (ca. 90 ka) and were subsequently isolated by the rising sea level during MIS 5a. Here we investigate environmental conditions during the Banwell Bone Cave MAZ using bone collagen δ13C and δ15N and tooth enamel δ18O and δ13C isotope analysis. We analyse bison and reindeer from the MAZ type-site, Banwell Bone Cave. Our results show unusually high δ15N values, which we ascribe to arid conditions within a temperate environment. Palaeotemperature estimates derived from enamel δ18O indicate warm temperatures, similar to present day. These results confirm that the Banwell Bone Cave MAZ relates to a temperate interstadial and supports its correlation to MIS 5a rather than MIS 4

    Global Update and Trends of Hidden Hunger, 1995-2011: The Hidden Hunger Index

    Get PDF
    Background Deficiencies in essential vitamins and minerals–also termed hidden hunger–are pervasive and hold negative consequences for the cognitive and physical development of children. Methods This analysis evaluates the change in hidden hunger over time in the form of one composite indicator–the Hidden Hunger Index (HHI)–using an unweighted average of prevalence estimates from the Nutrition Impact Model Study for anemia due to iron deficiency, vitamin A deficiency, and stunting (used as a proxy indicator for zinc deficiency). Net changes from 1995–2011 and population weighted regional means for various time periods are measured. Findings Globally, hidden hunger improved (-6.7 net change in HHI) from 1995–2011. Africa was the only region to see a deterioration in hidden hunger (+1.9) over the studied time period; East Asia and the Pacific performed exceptionally well (-13.0), while other regions improved only slightly. Improvements in HHI were mostly due to reductions in zinc and vitamin A deficiencies, while anemia due to iron deficiency persisted and even increased. Interpretation This analysis is critical for informing and tracking the impact of policy and programmatic efforts to reduce micronutrient deficiencies, to advance the global nutrition agenda, and to achieve the Millennium Development Goals (MDGs). However, there remains an unmet need to invest in gathering frequent, nationally representative, high-quality micronutrient data as we renew our efforts to scale up nutrition, and as we enter the post-2015 development agenda. Funding Preparation of this manuscript was funded by Sight and Life. There was no funding involved in the study design, data collection, analysis, or decision to publish

    Late Pleistocene/Early Holocene Migratory Behavior of Ungulates Using Isotopic Analysis of Tooth Enamel and Its Effects on Forager Mobility

    Get PDF
    Zooarchaeological and paleoecological investigations have traditionally been unable to reconstruct the ethology of herd animals, which likely had a significant influence on the mobility and subsistence strategies of prehistoric humans. In this paper, we reconstruct the migratory behavior of red deer (Cervus elaphus) and caprids at the Pleistocene-Holocene transition in the northeastern Adriatic region using stable oxygen isotope analysis of tooth enamel. The data show a significant change in δ18O values from the Pleistocene into the Holocene, as well as isotopic variation between taxa, the case study sites, and through time. We then discuss the implications of seasonal faunal availability as determining factors in human mobility patterns

    Quantification and propagation of errors when converting vertebrate biomineral oxygen isotope data to temperature for palaeoclimate reconstruction

    Get PDF
    Oxygen isotope analysis of bioapatite in vertebrate remains (bones and teeth) is commonly used to address questions on palaeoclimate from the Eocene to the recent past. Researchers currently use a range of methods to calibrate their data, enabling the isotopic composition of precipitation and the air temperature to be estimated. In some situations the regression method used can significantly affect the resulting palaeoclimatic interpretations. Furthermore, to understand the uncertainties in the results, it is necessary to quantify the errors involved in calibration. Studies in which isotopic data are converted rarely address these points, and a better understanding of the calibration process is needed. This paper compares regression methods employed in recent publications to calibrate isotopic data for palaeoclimatic interpretation and determines that least-squares regression inverted to x=(y-b)/a is the most appropriate method to use for calibrating causal isotopic relationships. We also identify the main sources of error introduced at each conversion stage, and investigate ways to minimise this error. We demonstrate that larger sample sizes substantially reduce the uncertainties inherent within the calibration process: typical uncertainty in temperature inferred from a single sample is at least ¹4°C, which multiple samples can reduce to ¹1-2°C. Moreover, the gain even from one to four samples is greater than the gain from any further increases. We also show that when converting δ18Oprecipitation to temperature, use of annually averaged data can give significantly less uncertainty in inferred temperatures than use of monthly rainfall data. Equations and an online spreadsheet for the quantification of errors are provided for general use, and could be extended to contexts beyond the specific application of this paper.Palaeotemperature estimation from isotopic data can be highly informative for our understanding of past climates and their impact on humans and animals. However, for such estimates to be useful, there must be confidence in their accuracy, and this includes an assessment of calibration error. We give a series of recommendations for assessing uncertainty when making calibrations of δ18Obioapatite-δ18Oprecipitation-Temperature. Use of these guidelines will provide a more solid foundation for palaeoclimate inferences made from vertebrate isotopic data.We are grateful to the University of Cambridge (AJEP) and the Royal Society (RES) for financial support

    Increased climate seasonality during the late glacial in the Gebel Akhdar, Libya

    Get PDF
    Oxygen isotope analysis (δ18O) of caprine and bovine tooth enamel carbonates from the Haua Fteah cave (Gebel Akhdar massif, northeast Libya) reveals significant differences in palaeoseasonality during the last c. 70 ka. Data indicate different phases of human occupation of the region occurred under notably different climatic conditions. During the last glacial period, prior to the Last Glacial Maximum, a gradual increase in climate aridity occurred. This was followed in the late glacial (c. 16.6–14.7 ka) by considerably more arid conditions and much greater climate seasonality, which was likely produced by changing winter precipitation amounts and a strengthening of arid summer air masses. The high seasonality in the late glacial coincides with a period when human activity at the Haua Fteah greatly intensified. Significant changes in subsistence strategies and the seasonal exploitation of food resources also occurred at this time. The results presented here suggest that changes in the seasonal climate may have affected the seasonal supply of floral and faunal resources available to local human populations at the time, which resulted in changing subsistence practices

    Pleistocene and Holocene palaeoclimates in the Gebel Akhdar (Libya) estimated using herbivore tooth enamel oxygen isotope compositions

    Get PDF
    The palaeoclimate of the Gebel Akhdar massif, in Cyrenaica, northeast Libya, is investigated using the stable oxygen isotope ratio (δ18O) of herbivore tooth enamel from the archaeological faunal assemblages of the Haua Fteah and Hagfet ed Dabba caves. Samples accumulated through human activity at the sites, thus climatic interpretations are in direct chronological association with periods of human presence in the local landscape. Wild Ammotragus lervia (Barbary sheep) and Bos sp. (auroch), and domestic Ovis sp. and Capra sp. from the Levalloiso-Mousterian (≥73.3–43.5 ka) to the Neolithic (∼9.3–5.4 ka) cultural phases are analysed. Results indicate that the most arid environment represented by the samples occurred at ∼32 ka, when populations associated with Dabban lithic assemblages were present within the region. Climatic instability increased during oxygen isotope stage 2. Consistent with other palaeoenvironmental investigations in the Gebel Akhdar, there is no evidence for hyper-arid events during the last glacial and surface water, most probably in the form of local springs, was available throughout the time periods considered. Overall, results indicate that different cultural groups occupied the Gebel Akhdar landscape under different climatic conditions, but that climate variations appear to have been of lower magnitude than those that occurred at inland North African locations. These reconstructions provide further support to the theory that the Gebel Akhdar may have served as a refugium for human populations in North Africa during times of global climatic extremes

    Use of micro-computed tomography imaging and porosity measurements as indicators of collagen preservation in archaeological bone

    Get PDF
    Collagen isolated from archaeological bone is a common material for radiocarbon dating, stable isotope analysis, and zooarchaeology by mass spectrometry (ZooMS). However, not all bones contain extant collagen, leading to unnecessary destruction of unproductive bones and wasted laboratory time and resources. An aim of this research is to study bone diagenesis, particularly collagen destruction, in an effort to develop a minimally destructive method for identifying bones with high collagen content. In a multi-method study of variably preserved bones from Etton, Cambridgeshire, UK, we examined material properties of Neolithic cattle and sheep bones including porosity, surface area, and elemental composition. Micro-computed tomography (microCT) is an imaging technique that furnishes three-dimensional images of mineralized materials such as bone. Cortical bone porosity, the percentage of total bone volume consisting of empty space as calculated using microCT, can act as a proxy for bone collagen preservation. In general, bones with high cortical porosity are unlikely to contain sufficient collagen for further analysis. Bones with apparently low cortical porosity have a more varied range of collagen preservation. Bone samples with low porosity and no extant collagen often contain micropores with a diameter of 10 nm or less that cannot be seen in microCT images but are apparent in pore size distributions measured by mercury porosimetry, and indicated by high surface areas measured by nitrogen adsorption. Furthermore, a re-evaluation of light-induced breakdown spectroscopy data from this same assemblage confirms that ratios of calcium to fluorine may likewise indicate the state of diagenesis

    Translating musculoskeletal bioengineering into tissue regeneration therapies.

    Get PDF
    Musculoskeletal injuries and disorders are the leading cause of physical disability worldwide and a considerable socioeconomic burden. The lack of effective therapies has driven the development of novel bioengineering approaches that have recently started to gain clinical approvals. In this review, we first discuss the self-repair capacity of the musculoskeletal tissues and describe causes of musculoskeletal dysfunction. We then review the development of novel biomaterial, immunomodulatory, cellular, and gene therapies to treat musculoskeletal disorders. Last, we consider the recent regulatory changes and future areas of technological progress that can accelerate translation of these therapies to clinical practice

    The effect of intervertebral cartilage on neutral posture and range of motion in the necks of sauropod dinosaurs

    Get PDF
    The necks of sauropod dinosaurs were a key factor in their evolution. The habitual posture and range of motion of these necks has been controversial, and computer-aided studies have argued for an obligatory sub-horizontal pose. However, such studies are compromised by their failure to take into account the important role of intervertebral cartilage. This cartilage takes very different forms in different animals. Mammals and crocodilians have intervertebral discs, while birds have synovial joints in their necks. The form and thickness of cartilage varies significantly even among closely related taxa. We cannot yet tell whether the neck joints of sauropods more closely resembled those of birds or mammals. Inspection of CT scans showed cartilage:bone ratios of 4.5% for Sauroposeidon and about 20% and 15% for two juvenile Apatosaurus individuals. In extant animals, this ratio varied from 2.59% for the rhea to 24% for a juvenile giraffe. It is not yet possible to disentangle ontogenetic and taxonomic signals, but mammal cartilage is generally three times as thick as that of birds. Our most detailed work, on a turkey, yielded a cartilage:bone ratio of 4.56%. Articular cartilage also added 11% to the length of the turkey's zygapophyseal facets. Simple image manipulation suggests that incorporating 4.56% of neck cartilage into an intervertebral joint of a turkey raises neutral posture by 15°. If this were also true of sauropods, the true neutral pose of the neck would be much higher than has been depicted. An additional 11% of zygapophyseal facet length translates to 11% more range of motion at each joint. More precise quantitative results must await detailed modelling. In summary, including cartilage in our models of sauropod necks shows that they were longer, more elevated and more flexible than previously recognised
    • …
    corecore