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Abstract:  10 
The position of the Banwell Bone Cave mammal assemblage zone (MAZ) in the 11 
mammalian biostratigraphy of the British Isles has been the focus of debate for 12 
decades.  Dominated by fauna typical of cold environments it was originally linked to 13 
the marine isotope stage (MIS) 4 stadial (c. 72-59 ka). Subsequently it was argued 14 
that the Banwell Bone Cave MAZ more likely relates to the temperate interstadial of 15 
marine isotope stage (MIS) 5a (c. 86–72 ka). It is envisioned that ‘cold fauna’ such as 16 
bison and reindeer moved into Britain during stadial MIS 5b (c. 90 ka) and were 17 
subsequently isolated by the rising sea level during MIS 5a. Here we investigate 18 
environmental conditions during the Banwell Bone Cave MAZ using bone collagen 19 
d13C and d15N and tooth enamel d18O and d13C isotope analysis. We analyse bison 20 
and reindeer from the MAZ type site, Banwell Bone Cave. Our results show 21 
unusually high d15N values, which we ascribe to arid conditions within a temperate 22 

environment. Palaeo-temperature estimates derived from enamel d18O indicate warm 23 
temperatures, similar to present day. These results confirm that the Banwell Bone 24 
Cave MAZ relates to a temperate interstadial and supports its correlation to MIS 5a 25 
rather than MIS 4. 26 
 27 
Keywords: MIS 5a, stable isotope, carbon, nitrogen, oxygen, collagen, enamel, 28 
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 30 
Introduction: 31 
Mammalian biostratigraphy focuses on correlating and sequencing geological 32 
deposits based on the fossil mammal assemblages contained within them. Mammals 33 
are good biostratigraphic indicators due to their rapid morphological evolution and 34 
turnover (Schreve, 1997). Quaternary climate fluctuation has resulted in major shifts 35 
in the biogeography of many mammal species, resulting in discernible patterns of 36 
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presence and absence in the fossil record of certain regions (Schreve, 1997). 37 
Currant and Jacobi (1997, 2001, 2002) outlined a mammalian biostratigraphic 38 
framework for the Late Pleistocene in the British Isles that described five mammal 39 
assemblage-zones (MAZ; distinctive fossil mammal bone assemblages), including 40 
the Banwell Bone Cave MAZ (hereafter the BBC MAZ). Named after the type-site, 41 
Banwell Bone Cave in Banwell, Somerset (Figure 1), the BBC MAZ is characterized 42 
by a low diversity fauna which consists primarily of tundra species. Reindeer 43 
(Rangifer tarandus) and bison (Bison priscus) dominate the fauna, with mountain 44 
hare (Lepus timidus), wolf (Canis Lupus), wolverine (Gulo gulo), and brown bear 45 
(Ursus arctos) being consistently present (Currant and Jacobi, 2001). Horse (Equus 46 
ferus) and traces of human presence are notably absent from this MAZ. The small 47 
mammal fauna from the BBC MAZ is restricted to a single species, the northern vole 48 
(Microtus oeconomus) (Currant and Jacobi 2011), which today inhabits a broad 49 
range of habitats including tundra, mixed forest, taiga and forest steppe biomes.  50 
 51 
The BBC MAZ is known from locations widespread throughout England and Wales 52 
(Figure 1). Currant and Jacobi (2001:1710) argued that the BBC MAZ is ‘clearly the 53 
vertebrate assemblage of a cold environment’ and postulated that it correlated 54 
closely with the early part of the last cold stage, marine isotope stage 4 (MIS 4). 55 
However, in subsequent publications Gilmour et al. (2007) and Currant and Jacobi 56 
(2011) questioned this correlation and suggested that the BBC MAZ might actually 57 
relate to interstadial MIS 5a (the Brimpton interstadial dating to approximately 86–72 58 
ka, Worsley et al. 1983, Bryant et al. 1983). Although typically characteristic of a 59 
fauna indicating cold tundra environments, many of the sites that contain the BBC 60 
MAZ also contain associated environmental proxies that indicate temperate climates, 61 
more characteristic of interstadial conditions. At Willment’s Pit, Isleworth, Greater 62 
London, fossil Coleoptera provide evidence of interstadial climatic conditions (Coope 63 
and Angus, 1975), while pollen and plant macrosfossils indicate vegetation 64 
dominated by herbaceous species typical of grasslands that occur in treeless 65 
landscapes (Kerney et al. 1982). At Cassington in Oxfordshire, Coleoptera and 66 
pollen provide evidence of an interstadial open tundra environment, with vegetation 67 
dominated by Arctic steppe/tundra herbaceous species (Maddy et al. 1998). Amino 68 
acid racemization dating has tentatively correlated these deposits with MIS 5c and 69 
MIS 5a, respectively (Penkman et al. 2011, 2013). Further, TIMS dating of stalagmite 70 
flowstone enclosing the BBC MAZ at Stump Cross Caverns in North Yorkshire, gave 71 
a date of 73.86 +1.20/-1.19 kyr, supporting an interstadial MIS 5a correlation for this 72 
assemblage (Gilmour et al. 2007).  73 
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 74 
Evidence from raised beaches, which indicate higher sea levels, suggest Britain was 75 
not joined to continental Europe for most of MIS 5 (Keen 1995). Gilmour et al. (2007) 76 
and Currant and Jacobi (2011) argue that the temperate faunal species typical of 77 
interglacial conditions survived in Island Britain up until MIS 5c, then during cold MIS 78 
5b Britain became temporarily reconnected to the continent and a major faunal 79 
change occurred, with the loss of most temperate mammal species and the gain of 80 
species typical of arctic conditions (arctic fox (Vulpes lagopus), wolverine (Gulo 81 
gulo), and reindeer (Rangifer tarandus)). With the onset of MIS 5a, they argue that 82 
the new fauna became trapped in Britain by the higher sea-levels and the return of 83 
Britain to being an island. The presence of a faunal assemblage typical of cold 84 
conditions, alongside palaeoclimate indicators of interstadial conditions, a restricted 85 
range of species and the absence of woolly mammoth (Mammuthus primigenius), 86 
wild horse (Equus ferus), woolly rhinoceros (Coelodonta antiquitatis), hominin 87 
remains and archaeology, which are present in MIS 5a on the European continent 88 
are all suggested to be evidence of Britain being an island isolated from the continent 89 
at this time (Currant and Jacobi 2011).  90 
 91 
The possibility that the BBC MAZ represent fauna typical of cold environments living 92 
in temperate conditions has implications both for the technique of mammalian 93 
biostratigraphy and for our understanding of the Quaternary history of the British 94 
Isles. Thus, further investigation is required to confirm whether the BBC MAZ relates 95 
to cold or temperate environmental conditions. Here we undertake stable isotope 96 
analysis of bison and reindeer bone and teeth from Banwell Bone Cave in order to 97 
establish the environmental context in which these animals lived. 98 
 99 
1.1 Background to stable isotopes: 100 
Palaeoclimatic and palaeoenvironmental data can be obtained from fossil tooth 101 
enamel and bone through stable isotope analyses. The measured isotopic signals 102 
are underpinned by dietary specialisation, animal behaviour and environmental 103 
conditions. This approach has enabled the reconstruction of Late Pleistocene 104 
palaeoenvironmental conditions at a range of archaeological and palaeontological 105 
sites (e.g. Sponheimer and Lee Thorpe, 2003; Hedges et al. 2005, Stevens and 106 
Hedges, 2004; Drucker et al. 2008, 2011; Stevens et al. 2008, 2014; Szpak et al. 107 
2010; Reade et al. 2016, 2020a; Fabre et al. 2011; Jones et al. 2018, 2019; Britton et 108 
al. 2019). 109 
 110 



4	
	

Skeletal carbon is acquired through the animal’s diet and in herbivores is ingested 111 
directly from plant tissue (Gannes et al. 1997). Within the context of Late Pleistocene 112 
Europe, where plants used the C3 photosynthetic pathway and C4 and CAM plants 113 
were most likely absent (Wißing et al. 2016), plant δ13C would have been influenced 114 
by a variety of climatic/environmental variables such as temperature, precipitation, 115 
relative humidity, atmospheric carbon dioxide concentrations and the canopy effect 116 
(Heaton, 1999; Kohn, 2010). Thus, faunal δ13C reflects underlying environmental 117 
conditions, mediated by species-specific dietary behaviours, such as grazing versus 118 
browsing (Heaton, 1999). Bone collagen δ13C signatures primarily reflect dietary 119 
protein whereas enamel carbonate δ13C reflects the whole diet (Ambrose and Norr, 120 
1993).  Relative to the plants consumed, herbivore bone collagen δ13C (δ13Ccoll) are 121 
approximately +5‰ enriched and enamel carbonate δ13C (δ13Cenamel) are 122 
approximately +14‰ enriched (Lee Thorpe et al. 1989; Cerling and Harris, 1999). 123 
Nutritional stress has also been suggested to influence animal δ13C values but the 124 
evidence for this is equivocal (Doi et al. 2017).  125 
 126 
Herbivore nitrogen is acquired from the plants in the animal’s diet (Gannes et al. 127 
1997). Globally, plant d15N has been shown to increase with decreasing mean annual 128 
precipitation, with plants growing in arid locations having higher δ15N values than 129 
those growing in wetter locations (Austin and Vitousek, 1998; Handley et al. 1999; 130 
Amundson et al. 2003; Szpak, 2014). Furthermore, plant δ15N values have been 131 
shown to be positively correlated with local temperatures, with plants growing in 132 
cooler ecosystems have lower δ15N values than those growing in warmer 133 
ecosystems (Martinelli et al. 1999; Amundson et al. 2003; Pardo et al. 2006; Szpak 134 
2014). However, at mean annual temperatures of <-0.5°C the relationship between 135 
temperature and plant δ15N deteriorates (Craine et al. 2009).  The relationships 136 
between plant δ15N and climatic variables are thought to be linked to mycorrhizal 137 
associations, N availability and greater relative importance of fractionating losses of 138 
N in hot, dry ecosystems compared to cold, wet ecosystems (Craine et al. 2015). As 139 
for carbon, the d15N signatures of the vegetation are passed on to the herbivore 140 
consumers and are recorded in their body tissues. Thus herbivore d15N reflect the 141 
underlying environmental conditions. Relative to the plants consumed, herbivore 142 
bone d15N are typically +3 to 5‰ enriched (Bocherens and Drucker, 2003). 143 
Nutritional stress can also affect animal δ15N, but the direction and magnitude of 144 
these effects depends on whether the animal is undergoing protein catabolism when 145 
they are starving or relying more heavily on fat reserves or other processes that 146 
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conserve protein during fasting (Hobson et al. 1993; Polischuk et al. 2001; Cherel et 147 
al. 2005; Fuller et al. 2005; Mekota et al. 2006; Lohuis et al. 2007; Newsome et al. 148 
2010; Bowes et al. 2014; Gomez-Campos et al. 2011; Aguilar et al. 2014, Fleming et 149 
al. 2018). 150 
 151 
Oxygen isotopes in mammal tooth enamel is linked to prevailing climatic and 152 
environmental conditions in the vicinity of the animal’s habitat during the period of 153 
tooth formation (see Pederzani and Britton, 2019 for review). For most species, 154 
drinking water is typically the largest source of O to the δ18O signature, but water 155 
contained in the diet and respiration also contribute (Bryant et al. 1995; Luz et al. 156 
1984; Longinelli 1984; Luz and Kolodny, 1985). The relative contribution that each of 157 
these pools makes to an animal’s body water depends on the physiological and 158 
behavioural characteristics of the species (Kohn, 1996; Kohn et al. 1996; Podlesak et 159 
al. 2008; Pederzani and Britton, 2019). For bison and reindeer (obligate drinkers and 160 
the species of focus in this study) empirical relationships between skeletal δ18O and 161 
the δ18Oprecip have been demonstrated (Hoppe, 2006; Longinelli et al. 2003), which in 162 
turn displays a strong relationship to surface air temperatures in mid and high latitude 163 
environments (Rozanski, 1993). Here we measure δ18O in tooth enamel carbonate. 164 
In medium-large sized mammals tooth formation typically lasts several months to a 165 
few years, thus a sample of enamel can provide information at either an annual or 166 
sub-annual resolution (Fricke et al. 1996). 167 
 168 
Methods: 169 
Ten bison and eleven reindeer bones along with eight bison and ten reindeer teeth 170 
were sampled for isotope analysis. All specimens came from the 2007 excavations at 171 
Banwell Bone Cave led by Roger Jacobi and Andy Currant as part of the Ancient 172 
Human Occupation of Britain (AHOB) project (Ashton and Stringer 2011). As the 173 
excavation was limited in size the recovered faunal assemblage was relatively small 174 
and it was not possible to select a single skeletal element to ensure any individual 175 
was only sampled once. However, the assemblage is thought to be a result of post-176 
depositional mass movement as the bones were completely mixed, directly 177 
articulating elements were absent, and parts of the same animal did not occur even 178 
vaguely together within the sediments (Currant and Jacobi, 2011). Details of skeletal 179 
elements sampled are given in supplementary files 1 and 2. The reindeer teeth 180 
sampled include six teeth found in situ in their mandibular bones (three left 181 
mandibles, two teeth per mandible), thus a minimum of 3 individuals is represented.  182 
 183 
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2.1 Collagen extraction and analysis 184 
Collagen was extracted from the bison and reindeer bone samples using a modified 185 
Longin (1971) method. Chunks of bone were cut using a dental drill with a small 186 
cutting wheel attachment. Each sample was cleaned by abrasion with aluminium 187 
oxide prior to collagen extraction. Bones were demineralised in 0.5M hydrochloric 188 
acid at 4oC until they had completely decalcified. Samples were then rinsed three 189 
times with deionized water and gelatinised in a pH3 aqueous solution for 48 hours at 190 
75oC. The filtered supernatant containing the soluble collagen was then collected, 191 
frozen, and lyophilized. The collagen was weighed into tin capsules for d13C and d15N 192 
analysis. Analysis was performed at the Godwin Laboratory, Department of Earth 193 
Sciences, University of Cambridge, using a Costech automated elemental analyser 194 
coupled to a Finnigan MAT253 isotope ratio mass spectrometer. Samples were 195 
analysed in duplicate, with carbon and nitrogen results being reported using the delta 196 
scale in units of ‘per mil’ (‰) relative to internationally accepted standards, VPDB 197 
and AIR respectively (Hoefs, 2009). Based on replicate analyses of international and 198 
laboratory standards, precision is better than ±0.2‰ for both d13C and d15N. 199 
 200 
2.2 Enamel carbonate preparation and analysis 201 
The tooth surfaces were cleaned with a brush and then lightly abraded using a 202 
tungsten drill bit. The enamel surface of each tooth was abraded from the apex to the 203 
cervix of the crown with a diamond-incrusted drill bit and the removed powder 204 
sample collected for analysis. Enamel powder samples were prepared according to 205 
Balasse et al. (2002). Samples were treated with 2–3% NaOCl for 24 hours 206 
(0.1ml/mg sample) then repeatedly rinsed with distilled water. Next 0.1 M acetic acid 207 
(0.1ml/mg sample) was added to the enamel powder and left for 4 hours. Samples 208 
were then thoroughly rinsed, frozen, and lyophilized. d18O and d13C analysis was 209 
performed at the Godwin Laboratory, Department of Earth Sciences, University of 210 
Cambridge. Samples were reacted with 100% orthophosphoric acid for 10 minutes at 211 
90oC in individual vessels in an automated cryogenic distillation system (PRISM), 212 
interfaced with a Finnigan MAT 253 isotope ratio mass spectrometer. Results are 213 
reported with reference to the international standard VPDB calibrated through the 214 
NBS19 standard (Coplen 1995) and the precision is better than ±0.10‰ for both d18O 215 
and d13C. 216 
 217 
Results:  218 
Collagen carbon and nitrogen: 219 
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Collagen was successfully extracted from all bones and had C/N atomic ratios 220 
between 2.9 and 3.6, which indicates good collagen preservation (DeNiro, 1985). 221 
The δ13Ccoll and δ15N values of bison and reindeer are listed in supplementary file 1 222 
and shown in figure 2. Additional published bison δ13Ccoll and δ15N data from two 223 
specimens from Banwell Bone Cave were added to the dataset (Higham et al. 2006). 224 
Bison δ13Ccoll values range from -21.4‰ to -20.3‰ with a mean of -20.7 ± 0.3 ‰ and 225 
δ15N values range from 9.1‰ to 10.8‰ with a mean of 9.8 ± 0.5 ‰. Reindeer δ13Ccoll 226 
values are higher than those of the bison, ranging from -19.9‰ to -19.6‰ with a 227 
mean of -19.8 ± 0.1 ‰, whereas reindeer δ15N values are generally lower and more 228 
variable than those of the bison, ranging from 5.8‰ to 9.2‰ with a mean of 7.4 ± 1.3 229 
‰. Mann-Whitney U tests show there is a significant difference between bison and 230 
reindeer δ15N (W=128, p < 0.001) and δ13Ccoll (W=0, p < 0.001). 231 
 232 
Tooth carbonate carbon and oxygen:  233 
Tooth δ13Cenamel and δ18Oenamel results are listed in supplementary file 2. Mean bison 234 
δ13Cenamel is -11.5 ± 1.0 ‰, with individual values ranging from -10.1 to -12.6 ‰. As 235 
with the δ13Ccoll results, reindeer mean δ13Cenamel is greater than that of the bison, 236 
being -10.5 ± 0.4 ‰. However, unlike the collagen, there is some overlap in reindeer 237 
and bison δ13Cenamel values (Figure 3). Less variability is seen the in reindeer 238 
δ13Cenamel (ranging from -10.1 to -11.0 ‰) than in that of the bison. δ18O values range 239 
from -7.0 to -5.7 ‰ for bison (mean = -6.5 ± 0.4 ‰) and -8.2 to -5.0 ‰ for reindeer 240 
(mean = -6.6 ± 1.3 ‰). Mann-Whitney U tests show there is no significant difference 241 
between bison and reindeer δ13Cenamel (W=25, p > 0.05) or δ18O (W=40, p > 0.05). 242 
 243 
Data conversions: 244 
To facilitate direct comparison, δ13Ccoll and δ13Cenamel were converted to δ13Cdiet by 245 
assuming a diet to collagen offset of +5‰, and diet to carbonate offset of +14‰ 246 
following Lee Thorpe et al. 1989 and Cerling and Harris 1999 (Figure 4, 247 
supplementary file 3). No significant difference was seen between estimated δ13Cdiet 248 
values reconstructed from tooth enamel and bone collagen for either bison (Mann-249 
Whitney U test, W=44, p > 0.05) or reindeer (Mann-Whitney U test, W=46, p > 0.05).   250 
 251 
To facilitate palaeo-drinking water estimates, we first converted δ18Oenamel results from 252 
the V-PDB to the V-SMOW scale following (Coplen, 2011): 253 

δ18OVSMOW = 1.03091*δ18OVPDB+30.91 254 
[1] 255 
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To estimate drinking water δ18O for bison, we invert the empirically derived 256 
relationship between tooth enamel carbonate δ18O (δ18Ocarb) and local environmental 257 
water (δ18Oenvi) given in Hoppe (2006) using the method recommended by Pryor et 258 
al. (2014): 259 
 260 

δ18Oenvi = (δ18Ocarb -30.057 (±0.58))/0.703 (±0.12) 261 
[2] 262 

For reindeer, we use a modified version of the relationship between skeletal 263 
phosphate δ18O (δ18Ophos) and local environmental water (δ18Oenvi) presented in 264 
Longinelli et al. (2003). Longinelli et al.’s dataset includes both tooth and bone 265 
samples and we note the relationship between δ18Ophos and δ18Oenvi differs between 266 
the two sample types. In our study we have analysed only tooth enamel, so we 267 
derive a relationship between δ18Ophos and δ18Oenvi based only on the tooth enamel 268 
data reported in Longinelli et al. (2003). Using inverted least-square regression 269 
(Pryor et al. 2014) the relationship between δ18Oenvi and δ18Ophos is given by: 270 
 271 

δ18Oenvi = (δ18Ophos – 20.117(± 0.34)) / 0.683 (±0.11) 272 
 [3] 273 

As this equation was derived for δ18Ophos, and we analysed the carbonate phase of 274 
enamel a conversion between the two bioapatite structures is required. δ18Ocarb 275 
covaries strongly with δ18Ophos and we estimate δ18Ophos for our results following 276 
Zazzo et al. (2004, equation 2):  277 

δ18Ophos = (0.973*δ18Ocarb (±0.01)) – 8.121(±0.36) 278 
[4] 279 

 280 
The calculated palaeo-δ18Oenvi values are assumed to provide a satisfactory 281 
approximation of local palaeo-precipitation δ18O (δ18Oprecip). Assuming the empirical 282 
relationship that exists in the modern environment between δ18Oprecip and mean 283 
annual air temperature (e.g. Rozanski et al, 1993) is applicable to the past, palaeo-284 
δ18Oprecip can be used to estimate palaeo-air temperature. However, this observed 285 
relationship is geographically variable. Here, we use the relationship derived from 286 
European data originating at sites below 500m of altitude by Pryor et al. (2014): 287 
 288 

Temperature (ºC) = (δ18Oprecip – 13.74 (±0.16)) / 0.53 (±0.08) 289 
[5] 290 
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Each data conversion has an associated uncertainty. We use the error propagation 291 
tool presented in Pryor et al. (2014) to calculate the compound uncertainty 292 
associated with our palaeo-δ18Oprecip and palaeotemperature estimates. 293 
 294 
Discussion 295 
Carbon: 296 
The bone collagen and tooth enamel δ13C values confirm a C3 plant-based diet, 297 
typical of the steppe-tundra grasslands of the Late Pleistocene. The significantly 298 
higher reindeer δ13Ccoll relative to bison δ13Ccoll  (Figure 2) follows a pattern often 299 
observed in Late Pleistocene contexts, where reindeer have higher δ13Ccoll than other 300 
contemporary herbivores including bovids, equids and other cervids such as red deer 301 
(e.g. Fizet et al. 1995; Drucker et al. 2003; Stevens et al. 2009). This has been 302 
attributed to their consumption of lichens, which exhibit higher δ13C values than 303 
sympatric C3 vascular plants (Park and Epstein, 1960; Maguas and Brugnoli, 1996; 304 
Drucker et al. 2001). The overlap of bison and reindeer δ13Cenamel values potentially 305 
indicates ecological niche overlap and suggests a lichen component in the bovid diet 306 
which is not obvious from the δ13Ccoll values. Lichens are a rich source of 307 
carbohydrate and poor source of protein. As δ13Cenamel reflect whole diet δ13C 308 
(Ambrose and Norr, 1993; Tieszen and Fagre, 1993) low lichen consumption is more 309 
likely to be visible in δ13Cenamel than in δ13Ccoll, which primarily reflect dietary protein 310 
δ13C (Krueger & Sullivan, 1984). Overlap between bovid and reindeer dietary niche 311 
and potential lichen consumption by bovids has previously been suggested in other 312 
Late Pleistocene contexts (Bocherens et al. 2015; Julien et al. 2012; Reade et al., 313 
2020b), and has been observed also in some modern bison populations (Larter and 314 
Gates, 1991). Overlapping reindeer and bison δ13Cenamel values could also be 315 
produced by species-specific differences in tooth growth and enamel mineralisation 316 
rates. A full year of tooth growth is represented in the majority of analysed bison 317 
teeth, such that the derived dietary signal will represent an average spanning this 318 
time period. In comparison, the majority of the analysed reindeer teeth formed 319 
between late spring and autumn, and thus represent a dietary signature biased 320 
toward the summer months (see supplementary file 2). In modern reindeer 321 
populations, lichen is less heavily relied upon in summer compared to in the winter 322 
(Holleman et al. 1979). Together tooth and bone δ13C data suggest the BBC MAZ 323 
was deposited at a time when steppe-tundra grasslands likely covered the local 324 
landscape. 325 
 326 
Nitrogen: 327 
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Both the reindeer and bison δ15N values are high for herbivore species. Notably the 328 
reindeer δ15N values are higher than all published Late Pleistocene reindeer δ15N 329 
values from the UK (Figure 5, supplementary file 4). Comparatively high reindeer 330 
δ15N values are relatively rare in Late Pleistocene Europe but are found in reindeer 331 
from southwest France during MIS 3 (Figure 5, Bocherens et al. 2014). From the 97 332 
Late Pleistocene European bison we found in the published literature, only two 333 
examples have δ15N values comparative to those observed at Banwell Bone Cave 334 
(Figure 6, supplementary file 5). One is from southwest France (Les Pradelles / 335 
Marillac δ15N = 9.3‰, Fizet et al. 1995) and another from Crimea, (Emine-Bair-336 
Khosar, δ15N = 9.1‰, Gasiorowski et al. 2014); both date to MIS 3. Thus, the range 337 
in bison δ15N observed in the Banwell Bone Cave material is extremely rare for Late 338 
Pleistocene Europe.  339 
 340 
Two possible explanations exist for such high herbivore δ15N values. First, elevated 341 
δ15N can be produced by nutritional stress. However, for such high bone collagen 342 
δ15N to be solely indicative of nutritional stress long periods of fasting/starvation for 343 
both reindeer and bison would be required. Given the abundance of the bison and 344 
reindeer remains at Banwell Bone Cave and at other site containing the BBC MAZ, it 345 
seems that the environment was suitable for long-term co-existence of the two 346 
species and does not suggest the environment was so nutritionally poor as to result 347 
in significant periods of starvation. Furthermore, where comparable reindeer δ15N 348 
values are seen in southwest France during MIS 3 (Bocherens et al. 2014), reindeer 349 
were also extremely abundant, often being the dominant fauna in zooarchaeological 350 
assemblages (Mellars, 2004). Such abundance is unlikely in an environment in which 351 
animals are starving.  352 
 353 
The alternative and most parsimonious explanation is that the elevated reindeer and 354 
bison δ15N values are linked to environmental conditions. Plant to herbivore δ15N 355 
fractionation has been shown to be constant (Männel et al. 2007; Kuitems et al. 356 
2015; Bocherens et al. 2014), and relationships between herbivore δ15N and 357 
temperature and/or aridity have been shown to be driven by the δ15N of the plants 358 
the animals consume (Murphy and Bowman, 2006; Hartman, 2011). Today, high 359 
plant d15N are linked to low precipitation (aridity) and higher temperatures. However, 360 
in southwest France, the high MIS 3 reindeer d15N values were found alongside 361 
elevated d15N values in contemporary herbivores and carnivores and were 362 
interpreted as being indicative of an environment for which no modern analogue is 363 
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known. The contemporary palaeoclimate proxies indicted relatively low temperatures, 364 
thus the elevated d15N values were ascribed to aridity (Fizet et al. 1995; Richards et 365 
al. 2008; Bocherens et al. 2014). Similarly, the beetle, pollen and plant macrofossil 366 
data from BBC MAZ sites, along with the bison and reindeer oxygen isotope data 367 
(see below) do not indicate very high temperatures (Coope and Angus, 1975; Coope 368 
et al. 1997; Maddy et al. 1998). Thus, the Banwell Bone Cave reindeer and bison 369 
δ15N likely also indicate arid conditions. The rarity of comparable bison δ15N values 370 
from Late Pleistocene Europe support the notion that the BBC MAZ was deposited 371 
under non-analogue environmental conditions. 372 
 373 
Oxygen: 374 
Mean δ18Oenamel

 values are similar for both species (-6.5 ± 0.4 ‰ for bison and -6.5 ± 375 
1.3 ‰ for reindeer). As with the δ13Cenamel and δ15Ncoll, reindeer δ18Oenamel is more 376 
variable than that of bison, ranging from -8.2 to -5.0 ‰, compared to -7.0 to -5.7 ‰. 377 
The higher variability in the reindeer δ18Oenamel is likely attributable to the different 378 
time periods each tooth represents, with the bison δ18Oenamel values relating to 379 
approximately a full annual cycle, and the reindeer δ18Oenamel signatures being biased 380 
toward the summer months (Supplementary file 2). 381 
  382 
Using the discussed data conversions, we estimate a mean palaeo-δ18Oprecip of -8.3 ± 383 
1.3 ‰ from the bison data and -7.0 ± 1.6 ‰ from the reindeer data. For individual 384 
samples, palaeo-δ18Oprecip estimates range from -9.1‰ to -7.1‰ for bison and -9.3‰ 385 
to -4.6‰ for reindeer, with associated uncertainties between 2.4‰ and 2.8‰ 386 
(Supplementary file 2). For comparison, modern mean annual δ18Oprecip in the UK 387 
ranges from approximately -8.5 to -6.5 ‰ (IAEA GNIP). Estimated palaeo-δ18Oprecip 388 
therefore indicates similar climatic conditions to the present day, i.e. temperate 389 
conditions, assuming that δ18Oprecip can be treated as a function of temperature. The 390 
palaeo-δ18Oprecip estimates made from the reindeer data include values higher than 391 
might be expected, and if taken at face value could indicate a climate far warmer 392 
than present. However, this conjecture should be treated cautiously. As the majority 393 
of our reindeer samples are believed to have formed only over the summer months, 394 
the occurrence of higher palaeo-δ18Oprecip estimates are not actually surprising. In 395 
fact, an estimated mean δ18Oprecip of -4.6‰ is not that dissimilar to modern mean 396 
monthly maximum values for the UK of approximately -4.5 to -2.0 ‰ (IAEA, GNIP). 397 
Regardless, the δ18Oenamel results only show evidence of δ18Oprecip values associated 398 
with temperate environments, and we find no indication of colder conditions.  399 
 400 
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Using species mean palaeo-δ18Oprecip estimates we derive palaeo-temperature 401 
estimates of 10.3 ± 2.5 ºC from the bison data and 12.8 ± 3.1 ºC from the reindeer 402 
data.  These temperatures are comparable to the recent (1981-2010) 30-year mean 403 
annual air temperature for southwest England of 10.5ºC 404 
(https://www.metoffice.gov.uk/). Similarities are also apparent between our 405 
palaeotemperature estimates and others from Late Pleistocene interglacial deposits. 406 
Coleoptera-based estimates from lithofacies B at Cassington, which contained a 407 
bison-reindeer fauna attributed to the BBC MAZ and has been dated to interstadial 408 
MIS 5a,  range from 17 - 18 ºC for the warmest month to -4 – 4 ºC for the coldest 409 
month (Maddy,1998; Penkman 2011, 2013). Comparatively, Coleoptera-based 410 
temperature estimates from lithofacies D at the site, correlated to stadial MIS 4, 411 
range from 7 - 11 ºC for the warmest month to -30 – -10 ºC for the coldest month 412 
(Maddy,1998). Likewise, molluscs from the organic silts at Willment’s Pit, Isleworth, 413 
which also contains mammalian fauna assigned to the BBC MAZ and tentatively 414 
correlated to interstadial MIS 5c, suggest mean July temperature of no lower than 415 
15ºC (Kerney, 1982; Penkman 2011, 2013). Based on these independent data, our 416 
palaeo-temperature estimates clearly fall within the expected range of a Late 417 
Pleistocene interstadial climate, and outside of the range expected of a Late 418 
Pleistocene stadial climate. 419 
 420 
Conclusion: 421 
The results of the stable isotope analyses conducted in this study confirm that the 422 
Banwell Bone Cave faunal assemblage relates to a temperate rather than cold 423 
environment. Our study is the first to derive palaeoclimate information directly from 424 
the fauna itself, providing evidence that the bison-reindeer fauna, typically thought of 425 
as a cold climate assemblage, existed under temperate climate conditions at Banwell 426 
Bone Cave. Our results support the correlation of the BBC MAZ to interstadial MIS 427 
5a rather than to the succeeding stadial of MIS 4. 428 
 429 
The δ13C values of bison and reindeer fauna indicate C3 plant-based diets, typical of 430 
the steppe-tundra grasslands of the Late Pleistocene. Lichen appears to have been 431 
important for reindeer and potentially also a component of the bison diet, thus 432 
indicating some possible ecological niche overlap. The δ15N values of both bison and 433 
reindeer are unusually high and likely represent arid conditions within a temperate 434 
environment. Mean palaeo-temperature estimates derived from bison and reindeer 435 
tooth enamel δ18O indicate that temperate conditions similar to the present day 436 
prevailed during the deposition of the fauna at Banwell Bone Cave. 437 
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 438 
Confirmation that fauna from the Banwell Bone Cave lived in conditions consistent 439 
with the temperate interstadial MIS 5a rather than the succeeding cool stadial MIS 4, 440 
lends support to the hypothesis that the BBC MAZ represents an island fauna and 441 
that a mismatch between British and other European mammal faunas existed during 442 
MIS 5 (Gilmour et al. 2007). Finally, this study provides a cautionary tale for the use 443 
of particular species as climatic indicators. The presence or absence of geographical 444 
barriers may substantially influence the species composition of a faunal assemblage 445 
to the extent that species may have existed in environments beyond their current 446 
environmental limits, or in environments for which there are no modern analogues.  447 
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Figure 2: Banwell Bone Cave bison and reindeer bone collagen d13C and d15N 896 
results. 897 
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Figure 3: Bison and reindeer calculated drinking water d18O values plotted against 902 
enamel d13C (See supplementary file 3 for enamel d18O values).   903 
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Figure 4: Calculated carbon isotope values of the diet consumed by Banwell Bone 908 
Cave bison and reindeer.  909 
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Figure 5: Bone collagen δ13C and δ 15N of late Pleistocene reindeer from the UK and 913 
southwest France. Additional data not produced for this publication has been collated 914 
from the published literature (Full details are given in Supplementary file 4). 915 
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Figure 6: Bone collagen δ13C and δ 15N of late Pleistocene Bovids from the UK and 918 
southwest France. Additional data not produced for this publication has been collated 919 
from the published literature (For full details see Supplementary file 5). 920 
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Supplementary text 1: ZooMS Methodology: 
 
A recording error resulted in the failure to record the element used to identify select specimens to species. 
Due to Covid-19 restrictions preventing access to collections, the elements used to identify species could 
not be re-checked. To confirm initial species identifications collagen peptide fingerprints were obtained for 
these specimens. This was undertaken following methods adapted from Buckley et al. (2009) and Welker 
et al. (2015) using the acid-insoluble collagen. For each sample, around 100 ng of already extracted 
collagen were transferred to Eppendorf micro-tubes and gelatinised in 50 µl 50 mM Ammonium 
Bicarbonate for 1h at 65°C. Samples were then incubated overnight at 37°C with 0.4 μg of sequencing 
grade modified trypsin (Promega). Following trypsin digestion, samples were acidified with 0.5% 
trifluoroacetic acid (TFA) and purified using PierceTM 100 µl C18 resin Tips (Thermo Scientific) using 
conditioning and eluting solutions composed of 50% acetonitrile and 0.1% TFA. Collagen was eluted in 50 
μL. 
For MALDI-TOF-MS, 0.5 μL of the trypsin-digested extract was spotted with 0.5 μL of α-cyano-
hydroxycinnamic acid matrix solution (0.1% TFA in ACN/H2O 1:1 v/v) onto a 48 spot MALDI target plate, 
and air dried. MALDI-MS analyses were carried out in triplicate on a Shimadzu MALDI 8020 instrument, 
operating at up to 2000 laser shots per plate spot, over a m/z range of 900-4000. The mass spectra were 
calibrated against an adjacent MS standard spot containing eight calibrant peptides (TOFMixTM) of 0.8 to 
3.7 kiloDalton (kDa) range (Bradykinin 1-7, angiotensin II, angiotensin I, Glu1-fibrinopeptide B, N-acetyl 
Renin substrate, ACTH 1–17 clip, ACTH 18–39 clip and ACTH 7–38 clip) – of which seven were used (1.0 
– 3.7 kDa range). 
The obtained collagen fingerprints were manually inspected for the presence of relevant peptide markers 
(A-G) in mMass v. 5.5.0 (Strohalm et al., 2010), after filtering peaks with a signal-to-noise ratio (S/N) 
threshold of 3.0 (Kirby et al., 2013), and using previously published collagen peptide markers from 
reference spectra (Buckley et al. 2009, 2017; Welker et al., 2016).  
 
All initial species identifications were confirmed by ZooMs analysis (See table S1.1 and S1.2) 



	 32	

Table S1.1 ZooMS results. Columns P1 to G1 indicate identified peaks in the mass spectra. ZooMS identification is based on these peaks 
              
Sample ID P1 A A' B C P2 D E F F' G G' ZooMS ID 
BW1 1105.2   1209.3 1427.4 1580.4 1648.5 2130.9   2853.1       Bison / Bos sp 

BW8 1105.4 1192.5 1208.5 1427.7 1580.7 1648.8 2131.2 2792.8 2853.8     3035.1 - shifted by 1 amu Bison / Bos sp 

BW11 1105.3     1427.5 1580.5 1648.6 2130.9     2899.4   3094.7 - shifted by 1 amu Capra sp / Rangifer 

BW12 1105.6 1150.6 1196.4 1427.7 1580.8 1648.8 2131.1         3094.9 - shifted by 1 amu Rangifer 

BW13 1105.6   1166.6 1427.9 1581.0 1649.0 2131.4   2883.0       Rangifer 

BW17 1105.5     1427.6 1580.6 1648.7 2130.9   2883.1     3093.0 Capra sp / Rangifer 

BW19 1105.6   1166.6 1427.7 1580.8 1648.8 2131.0   2883.5     3093.7 Rangifer 

BW20 1105.6 1150.6   1427.7 1580.7 1648.8 2131.0   2883.3     3093.9 Rangifer 

 
Table S1.2 Most probable identification based on macroscopic zooarchaeological, ZooMS and stratigraphic context. 
    
Sample ID Macroscopic zooarchaeological identification ZooMS identification Most probable identification1 
BW1 Bison Bison / Bos sp Bison 

BW8 Bison Bison / Bos sp Bison 

BW11 Rangifer tarandus Capra sp / Rangifer Rangifer tarandus 

BW12 Rangifer tarandus Rangifer Rangifer tarandus 

BW13 Rangifer tarandus Rangifer Rangifer tarandus 

BW17 Rangifer tarandus Capra sp / Rangifer Rangifer tarandus 

BW19 Rangifer tarandus Rangifer Rangifer tarandus 

BW20 Rangifer tarandus Rangifer Rangifer tarandus 
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Supplementary Table 1: Sample details and bone collagen carbon and nitrogen stable isotope results. 
Sample 
code Sample no Find no Species Element %C %N d13C d15N C:N source 

BW1 39 43 Bison * 33.6 12.3 -20.6 9.6 3.2 1 

BW2 10 11 (a) Bison Phalange 38.6 14.2 -20.8 9.1 3.2 1 

BW3 21 23 Bison Astragalus 42.6 15.6 -21.4 10.1 3.2 1 

BW4 26 25 Bison Vertebrae 41.8 15.3 -20.7 9.7 3.2 1 

BW5 10 16 Bison Phalange 40.4 14.8 -20.6 9.8 3.2 1 

BW6 39 40 Bison Scapula 43.5 15.9 -20.3 9.7 3.2 1 

BW7 1 8 Bison Phalange 43.3 15.8 -20.6 9.9 3.2 1 

BW8 10 11 Bison * 47.3 17.4 -20.7 9.1 3.2 1 

BW9 45 47 Bison Vertebrae 43.8 16 -20.5 9.6 3.2 1 

BW10 8 1 Bison Vertebrae 44.6 16.3 -20.8 9.4 3.2 1 

OxA-14136     Bison calcaneum 41.2   -20.3 10.8 3.2 2 

OxA-14138     Bison calcaneum 41.1   -20.7 10.6 3.1 2 

BW11 10 12 Reindeer * 43.5 15.8 -19.9 9.2 3.2 1 

BW12 18 19 Reindeer * 41.6 15.2 -19.8 6.4 3.2 1 

BW13   7 Reindeer * 40.3 14.7 -19.8 6.1 3.2 1 

BW14 33 38 Reindeer Vertebrae 41.9 15.3 -19.7 7.1 3.2 1 

BW15   5 Reindeer Mandible 40.9 14.9 -19.6 8.3 3.2 1 

BW16 45 46 Reindeer Maxilla 42.3 15.4 -19.7 7.5 3.2 1 

BW17 18 17 Reindeer * 42.8 15.7 -19.7 6 3.2 1 

BW18   14 Reindeer Astragalus 46.3 17 -19.9 7.9 3.2 1 

BW19 21 24 Reindeer * 52.5 19.2 -19.9 8.3 3.2 1 

BW20 60 61 Reindeer * 49.5 18.1 -19.6 9.2 3.2 1 

BW21 33 36 Reindeer Scapula 43.3 15.8 -19.8 5.8 3.2 1 

           
           

1: This study           
2: Higham, T. G., Jacobi, R. M. & Bronk Ramsey, C. AMS radiocarbon dating of ancient bone using ultrafiltration. Radiocarbon 48, 179–195 
(2006) 

* Element not recorded so species identification was confirmed by ZooMs. See supplementary text 1    
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Supplementary Table 2: Sample details, tooth enamel oxygen and carbon isotope results, and results of conversion equations 

Sample code Species Notes Tooth 
Animal age during 
formation (months) 

Measured 
enamel 

carbonate 
d13C 

Measured 
enamel 

carbonate 
d18O vpdb 

Calculated 
carbonate 
d18O 

vsmow         
(equation 

1) 

Calculated 
phosphate 

d18O 
vsmow 

(equation 
2) 

Calculated drinking water 
d18O vsmow (bison 
equation 3, reindeer  

equation 4) 
ED1 Bison   Upper left P3/P4 9 months to c.30months -10.9 -7.0 23.7 14.9 -9.1 ±  2.6 

ED2 Bison   Upper left M1/M2 en utero to c.13 months -12.6 -6.6 24.1 15.3 -8.5 ±  2.7 

ED3 Bison   Lower right P3/P4 9 months to c.30months -11.7 -6.7 24.0 15.3 -8.6 ±  2.6 

ED4 Bison   Upper left M1/M2 en utero to c.13 months -12.4 -5.7 25.0 16.2 -7.1 ±  2.7 

ED5 Bison   Upper left M1/M2 en utero to c.13 months -11.3 -6.5 24.2 15.5 -8.3 ±  2.7 

ED11 Bison   Lower M1 en utero to c.4months -12.5 -6.4 24.3 15.5 -8.2 ±  2.7 

ED12 Bison   Upper left M3 9 months to c.24months -10.2 -6.8 23.9 15.2 -8.7 ±  2.6 

ED13 Bison   Upper Left M2 Birth to c.13 months -10.1 -6.0 24.7 15.9 -7.6 ±  2.7 

ED14 Reindeer   Lower Left M1/M2 3 to 9 months -11 -5.1 25.6 16.8 -4.8 ±  2.8 

ED15 Reindeer   Lower Left M1/M2 3 to 9 months -10.1 -8.2 22.5 13.8 -9.3 ±  2.4 

ED16 Reindeer 
ED16, ED23 from same 
mandible Left lower P2 13 to 18 months -10.5 -5.0 25.8 17.0 -4.6 ±  2.8 

ED17 Reindeer   Upper Left P2/dp2? 13 to 18 months -13.3 -8.0 22.6 13.9 -9.1 ±  2.4 

ED18 Reindeer   Upper right M3 9 to 26 months -10.7 -5.6 25.1 16.3 -5.5 ±  2.7 

ED19 Reindeer 
ED19, ED20 from same 
mandible Upper Left M3 9 to 26 months -10.2 -5.6 25.1 16.3 -5.6 ±  2.7 

ED20 Reindeer 
ED19, ED20 from same 
mandible Upper Left M2 13 to 18 months -10.3 -8.1 22.5 13.8 -9.2 ±  2.4 

ED21 Reindeer 
ED21, ED22from same 
mandible Lower left P3 13 to 18 months -11 -7.4 23.3 14.6 -8.1 ±  2.5 

ED22 Reindeer 
ED21, ED22from same 
mandible Lower Left P2 13 to 18 months -10.9 -7.7 23.0 14.2 -8.6 ±  2.4 

ED23 Reindeer 
ED16, ED23 from same 
mandible Left lower P3 13 to 18 months -10.1 -5.7 25.1 16.3 -5.6 ±  2.7 

          
Bison-based palaeo-δ18Oprecip estimate                 -8.3 ± 1.3  

Reindeer-based palaeo-δ18Oprecip estimate                 -7.0 ± 1.6  

Bison-based temperature estimate (ºC) (equation 5)                 10.3 ± 2.5  
Reindeer-based temperature estimate (ºC) 
(equation 5)                 12.8 ± 3.1 

          
Equation 1: δ18OVSMOW = 1.03091*δ18OVPDB+30.91    (Coplen 2011)       
Equation 2: δ18Ophos = 0.973*δ18Ocarb - 8.12 (Zazzo et al. 2004)       
Equation 3: δ18Oenvi = (δ18Ocarb  -30.057 (±0.58))/0.703 (±0.12) (based on Hoppe 2006)      
Equation 4: δ18Oenvi = (δ18Ophos – 20.117(± 0.34)) / 0.683 (±0.11) (based on Longinelli et al., 2003)      
Equation 5: temperature (ºC) = (δ18Oprecip – 13.74 (±0.16)) / 0.53 (±0.08) (Pryor et al., 2014)      

 
Timing of crown formation or enamel mineralization in Rangifer is estimated here based on known information for other deer species as this information is yet to be established for reindeer (Brown and Chapman, 1991a, b).  
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For Bison, these estimates are based on Gadbury et al. 2000. 

 
Supplementary table 2 bibliography 
Coplen, T. B., 2011. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Communications in Mass Spectrometry 25(17), 2538–2560. 
Zazzo, A., Lécuyer, C., Sheppard, S.M., Grandjean, P., Mariotti, A., 2004. Diagenesis and the reconstruction of paleoenvironments: a method to restore original δ18O values of carbonate and phosphate from fossil 
tooth enamel. Geochimica et Cosmochimica Acta 68(10), 2245-2258. 
Hoppe, K.A. 2006. Correlation between the oxygen isotope ratio of North American bison teeth and local waters: implication for paleoclimatic reconstructions. Earth Planetary Science Letters 244 (1-2), 408-417. 
Longinelli, A., Iacumin, P., Davanzo, S., Nikolaev, V., 2003. Modern reindeer and mice: revised phosphate–water isotope equations. Earth and Planetary Science Letters 214(3-4), 491-498. 
Pryor, A.J., Stevens, R.E., O'Connell, T.C., Lister, J.R., 2014. Quantification and propagation of errors when converting vertebrate biomineral oxygen isotope data to temperature for palaeoclimate 
reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 412, 99-107. 
Brown, W.A.B., Chapman, N.G., 1991a. Age assessment of fallow deer (Dama dama) from a scoring scheme based on radiographs of developing permanent molariform teeth. Journal of Zoology 224(3), 367-379.  
Brown, W.A.B., Chapman, N.G., 1991b. The dentition of red deer (Cervus elaphus): a scoring scheme to assess age from wear of the permanent molariform teeth. Journal of Zoology 224(4), 519-536. 
Gadbury, C., Todd, L., Jahren, A.H., Amundson, R., 2000. Spatial and temporal variations in the isotopic composition of bison tooth enamel from the Early Holocene Hudson-Meng Bone Bed, Nebraska. 
Palaeogeography, Palaeoclimatology, Palaeoecology 157 (1-2), 79-93. 



	 37	

Supplementary Table 3: Results of conversion of collagen and carbonate d13C data to estimated 
d13C diet. 

Sample code Species d13C Material Calculated d13C diet 

BW1 Bison -20.6 Collagen -25.6 

BW2 Bison -20.8 Collagen -25.8 

BW3 Bison -21.4 Collagen -26.4 

BW4 Bison -20.7 Collagen -25.7 

BW5 Bison -20.6 Collagen -25.6 

BW6 Bison -20.3 Collagen -25.3 

BW7 Bison -20.6 Collagen -25.6 

BW8 Bison -20.7 Collagen -25.7 

BW9 Bison -20.5 Collagen -25.5 

BW10 Bison -20.8 Collagen -25.8 

OxA-14136 Bison -20.3 Collagen -25.3 

OxA-14138 Bison -20.7 Collagen -25.7 

BW11 Reindeer -19.9 Collagen -24.9 

BW12 Reindeer -19.8 Collagen -24.8 

BW13 Reindeer -19.8 Collagen -24.8 

BW14 Reindeer -19.7 Collagen -24.7 

BW15 Reindeer -19.6 Collagen -24.6 

BW16 Reindeer -19.7 Collagen -24.7 

BW17 Reindeer -19.7 Collagen -24.7 

BW18 Reindeer -19.9 Collagen -24.9 

BW19 Reindeer -19.9 Collagen -24.9 

BW20 Reindeer -19.6 Collagen -24.6 

BW21 Reindeer -19.8 Collagen -24.8 

ED1 Bison -10.9 Enamel -24.9 

ED2 Bison -12.6 Enamel -26.6 

ED3 Bison -11.7 Enamel -25.7 

ED4 Bison -12.4 Enamel -26.4 

ED5 Bison -11.3 Enamel -25.3 

ED11 Bison -12.5 Enamel -26.5 

ED12 Bison -10.2 Enamel -24.2 

ED13 Bison -10.1 Enamel -24.1 

ED14 Reindeer -11 Enamel -25 

ED15 Reindeer -10.1 Enamel -24.1 

ED16 Reindeer -10.5 Enamel -24.5 

ED17 Reindeer -13.3 Enamel -27.3 

ED18 Reindeer -10.7 Enamel -24.7 

ED19 Reindeer -10.2 Enamel -24.2 

ED20 Reindeer -10.3 Enamel -24.3 

ED21 Reindeer -11 Enamel -25 

ED22 Reindeer -10.9 Enamel -24.9 

ED23 Reindeer -10.1 Enamel -24.1 
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δ13Ccoll and δ13Cenamel were converted to δ13Cdiet by assuming a diet to collagen offset of +5‰, and diet to carbonate offset of +14‰ following Lee 
Thorpe et al. 1989 and Cerling and Harris 1999  

     
Lee-Thorp, J. A., Sealy, J. C., van der Merwe, N. J., 1989. Stable carbon isotope ratio differences between bone collagen and bone apatite and 
their relationship to diet. Journal of Archaeological Science 16(6), 585-599. 
Cerling, T. E., Harris, J. M., 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological 
and paleoecological studies. Oecologia 120(3), 347-363. 

 



	 39	

Supplementary Table 4: Bone collagen δ13C and δ 15N of late Pleistocene reindeer from the UK and southwest France collated from published 
literature. 

Site Name Country Element Lab code 

Direct 14C 

date lab 

Code 

Direct 14C 

date 

uncertainty 

on 14C 

date Age category 

Collagen 

d13C 

Collagen 

d15N 

Collagen 

C:N ratio 

Date 

reference 

Carbon 

(coll) 

reference 

Nitrogen 

(coll) 

reference 

Sun Hole Cave  UK 1st phalange OxA-14827 OxA-14827 10145 55 GS-1 (Younger Dryas) -18.3 4.6 3.2 11 11 11 

Kent’s Cavern UK 1st phalange OxA-14825 OxA-14825 10255 45 GS-1 (Younger Dryas) -19.5 5.1 3.2 11 11 11 

Chelm's Combe UK left dentary A/CC/B/6 OxA-17831 10480 45 GS-1 (Younger Dryas) -18.4 4 3.2 11 11 11 

Foxhole Cave UK astragalus OxA-8312 OxA-8312 10685 65 GS-1 (Younger Dryas) -18.7 3.4 3.3 15 15 15 

Foxhole Cave UK astragalus OxA-25145 OxA-25145 10780 50 GS-1 (Younger Dryas) -19 3.5 3.2 16 16 16 

Foxhole Cave UK tibia OxA-8311 OxA-8311 10785 65 GS-1 (Younger Dryas) -18.7 4 3.4 15 15 15 

Gough's Cave UK antler OxA-18064 OxA-18064 12535 55 GS-2.1a -19.2 1.8 3.2 11 11 11 

Foxhole Cave UK astragalus OxA-25146 OxA-25146 12555 55 GS-2.1a -19.7 2.7 3.2 16 16 16 

Kent’s Cavern UK astralagus, left OxA-14826 OxA-14826 14395 60 GS-2.1a -18.4 4.7 3.2 11 11 11 

Reindeer Rift, 

Cattedown UK calcaneum, sin. OxA-17160 OxA-17160 14550 55 GS-2.1a -18.4 3.7 3.2 11 11 11 

Goat's Hole (Paviland) UK bone OxA-17560 OxA-17560 24240 110 OIS3 -17.7 3.4 3.3 12 12 12 

Pontnewydd Cave UK 1st phalange OxA-13984 OxA-13984 25210 120 OIS3 -18.4 3.1 3.2 3 3 3 

Goat's Hole (Paviland) UK antler OxA- 7084 OxA-7084 28550 650 OIS3 -19.2 3.1 3.1 15 15 15 

Pontnewydd Cave UK metacarpal OxA-13993 OxA-13993 30240 230 OIS3 -18.5 3.2 3.2 3 3 3 

Pontnewydd Cave UK tibia OxA-11672 OxA-11672 31800 1000 OIS3 -17.7 3 3.3 3 3 3 

Goat's Hole (Paviland) UK antler OxA-13438 OxA-13438 31990 180 OIS3 -19 3.7 3.2 12 12 12 

Kent’s Cavern UK antler OxA-30162 OxA-30162 34850 600 OIS3 -18.8 3.2 3.4 14 14 14 

Kent’s Cavern UK antler OxA-30272 OxA-30272 35100 650 OIS3 -19.1 -0.7 3.3 14 14 14 

Pontnewydd Cave UK tibia OxA-11671 OxA-11671 35400 > OIS3 -19.7 3 3.4 3 3 3 

Pontnewydd Cave UK humerus (left) OxA-11669 OxA-11669 36700 > OIS3 -20 5.2 3.5 3 3 3 

Goat's Hole (Paviland) UK antler OxA-13658 OxA-13658 37350 320 OIS3 -18.6 5.8 3.2 12 12 12 

Pin Hole  UK antler OxA-11980 OxA-11980 37760 340 OIS3 -19.5 4.8 3.3 13 13 13 

Pontnewydd Cave UK right mandible OxA-14052 OxA-14052 39600 900 OIS3 -18.6 3.1 3.4 3 3 3 

Kent’s Cavern UK left dentary OxA-13888 OxA-13888 40000 700 OIS3 -18.5 2.8 3.3 8 8 8 

Pontnewydd Cave UK humerus (right) OxA-11670 OxA-11670 40200 > OIS3 -18.4 2.5 3.3 3 3 3 

Goat's Hole (Paviland) UK antler OxA-13439 OxA-13439 40570 370 OIS3 -18.8 2.2 3.2 12 12 12 
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Site Name Country Element Lab code 

Direct 14C 

date lab 

Code 

Direct 14C 

date 

uncertainty 

on 14C 

date Age category 

Collagen 

d13C 

Collagen 

d15N 

Collagen 

C:N ratio 

Date 

reference 

Carbon 

(coll) 

reference 

Nitrogen 

(coll) 

reference 

Pin Hole  UK antler OxA-11797 OxA-11797 40650 500 OIS3 -18.5 0.8 3.4 8 8 8 

Pontnewydd Cave UK astragalus OxA-14055 OxA-14055 41400 1400 OIS3 -18.4 3 3.3 3 3 3 

Pin Hole  UK antler OxA- 11796 OxA-11796 44200 800 OIS3 -17.5 1.6 3.3 8 8 8 

Robin Hood's Cave UK bone OxA-12772 OxA-12772 47300 1200 OIS3 -18.1 3.7 3.2 13 13 13 

Kent’s Cavern UK proximal radius OxA-14714 OxA-14714 49600 2200 OIS3 -18.6 3.1 3.3 8 8 8 

Abri Castanet France tibia CST400 GifA 97312 32460 420 OIS 3 -19.5 7.6 3 2 2 2 

Abri Castanet France metatarsus CST600 GifA 97313 32750 460 OIS 3 -19.8 9.7 3.1 2 2 2 

Abri Castanet France humerus CST500 GifA 99165 31430 390 OIS 3 -19.2 9.2 3.1 2 2 2 

Abri Castanet France tibia CST300 GifA 99166 34320 520 OIS 3 -19.1 10.3 3.2 2 2 2 

Abri Castanet France femur CST200 GifA 99180 32950 520 OIS 3 -18.7 10.3 3 2 2 2 

Abri Castanet France metatarsus CST100       OIS 3 -18.8 8.6 3 2 2 2 

Abri Castanet France humerus CST-A1       OIS 3 -19.3 7.8 3.5 2 2 2 

Abri Lartet France astragalus LRT-2       OIS 3 -19.2 8.4 3.3 2 2 2 

Abri Lartet France astragalus LRT-3       OIS 3 -19.3 7.5 3.3 2 2 2 

Abri Pasquet France calcaneum PSQ-1       OIS 3 -19.4 8.9 3.5 2 2 2 

Abri Pataud France Tibia P-19918 OxA-21581 33550 550 OIS 3 -19.3 7.5 3.3 9 6 6 

Abri Pataud France Metacarpal III-I P-19931 OxA-21587 28150 290 OIS 3 -19.2 6 3.3 9 6 6 

Abri Pataud France Central + fourth t P-19932 OxA-21588 28250 280 OIS 3 -19.2 6 3.3 9 6 6 

Abri Pataud France Tibia P-19912 OxA-21599 34850 600 OIS 3 -18.6 6.6 3.3 9 6 6 

Abri Pataud France Metatarsal III-I P-19913 OxA-21600 34200 550 OIS 3 -19.2 7.4 3.3 9 6 6 

Abri Pataud France Bone P-21953 OxA-21670 33450 500 OIS 3 -19.2 7.2 3.4 9 6 6 

Abri Pataud France Bone P-21954 OxA-21671 34300 600 OIS 3 -19.1 7.5 3.3 9 6 6 

Grotte XVI France metatarsus G16-47       OIS 3 -19.1 7.7 3.3 2 2 2 

Grotte XVI France metatarsus G16-50       OIS 3 -19.3 7 3.2 2 2 2 

Grotte XVI France tibia G16-100       OIS 3 -19.3 6.6 3.3 2 2 2 

Grotte XVI France mandible G16-19       OIS 3 -19.5 6.1 3.4 2 2 2 

Grotte XVI France radioulna G16-20       OIS 3 -18.9 6 3.3 2 2 2 

Grotte XVI France metatarsus G16-23       OIS 3 -19 7.2 3.2 2 2 2 

Grotte XVI France metatarsus G16-24       OIS 3 -19.5 6.6 3.3 2 2 2 
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Site Name Country Element Lab code 

Direct 14C 

date lab 

Code 

Direct 14C 

date 

uncertainty 

on 14C 

date Age category 

Collagen 

d13C 

Collagen 

d15N 

Collagen 

C:N ratio 

Date 

reference 

Carbon 

(coll) 

reference 

Nitrogen 

(coll) 

reference 

Grotte XVI France metacarpum G16-25       OIS 3 -19.1 7.4 3.3 2 2 2 

Grotte XVI France metatarsus G16-26       OIS 3 -19.1 6.5 3.3 2 2 2 

Grotte XVI France mandible G16-37       OIS 3 -18.9 6.4 3.3 2 2 2 

Grotte XVI France phalanx I G16-70       OIS 3 -19 5.8 3.3 2 2 2 

Grotte XVI France astragalus G16-76       OIS 3 -19.8 8 3.3 2 2 2 

Grotte XVI France metapodial G16-93       OIS 3 -19.2 7.1 3.3 2 2 2 

Grotte XVI France metacarpum G16-94       OIS 3 -19.3 7.8 3.3 2 2 2 

Grotte XVI France metacarpum G16-95       OIS 3 -19.4 7.4 3.3 2 2 2 

La Berbie France jawbone LBR1100       OIS 3 -19.1 7.6 3.2 1 1 1 

La Berbie France femur LBR3400       OIS 3 -19.4 5.8 3.3 1 1 1 

La Moustier France metacarpal OxA-25170 OxA-25170 50000 3900 OIS 3 -19.4 6.2 3.5 10 10 10 

La Quina France bone OxA-21807 OxA-21807 45200 2200 OIS 3 -18.678 7.6 3.3 10 10 10 

Le Moustier France calcaneum G16-77       OIS 3 -19.3 6.3 3.3 2 2 2 

Le Moustier France scapula MST-12       OIS 3 -19.3 6.3 3.3 2 2 2 

Les Peyrugues  France humerus PRG3900       OIS 3 -19.2 6.3 3.3 5 5 5 

Les Peyrugues  France radius PRG5400       OIS 3 -19.4 6 3.1 5 5 5 

Les Peyrugues  France long bone PRG5500       OIS 3 -19 6.1 3.3 5 5 5 

Les Peyrugues  France metatarsal PRG5600       OIS 3 -19.7 6 3.2 5 5 5 

Les Peyrugues  France radius PRG5800       OIS 3 -19.2 6.1 3.2 5 5 5 

Les Pradelles / 

Marillac France bone not given       OIS 3 -20.3 6.5 

not 

given 7 7 7 

Les Pradelles / 

Marillac France bone not given       OIS 3 -19.6 6.9 

not 

given 7 7 7 

Les Pradelles / 

Marillac France bone not given       OIS 3 -19.5 6.2 

not 

given 7 7 7 

Les Pradelles / 

Marillac France bone not given       OIS 3 -19.4 6.5 

not 

given 7 7 7 

Les Pradelles / 

Marillac France bone not given       OIS 3 -19.4 6.3 

not 

given 7 7 7 

Les Pradelles / 

Marillac France bone not given       OIS 3 -19.2 5.9 

not 

given 7 7 7 

Les Pradelles / 

Marillac France bone not given       OIS 3 -19.2 6.6 

not 

given 7 7 7 

Mandrin France femur OxA-21694 OxA-21694 47100 0 OIS 3 -19.5 6.6 3.4 10 10 10 

Roc-de-Combe France metatarsus RCM-22       OIS 3 -18.4 7.6 3.3 2 2 2 



	 42	

Site Name Country Element Lab code 

Direct 14C 

date lab 

Code 

Direct 14C 

date 

uncertainty 

on 14C 

date Age category 

Collagen 

d13C 

Collagen 

d15N 

Collagen 

C:N ratio 

Date 

reference 

Carbon 

(coll) 

reference 

Nitrogen 

(coll) 

reference 

Roc-de-Combe France metatarsus RCM-23       OIS 3 -19.4 8.6 3.3 2 2 2 

Roc-de-Combe France metatarsus RCM-24       OIS 3 -19.1 6.5 3.2 2 2 2 

Roc-de-Combe France phalanx RCM-25       OIS 3 -19.8 8 3.3 2 2 2 

Roc-de-Combe France maxillary RCM-26       OIS 3 -19.4 7.2 3.3 2 2 2 

Saint-Césaire France metapodium RPB7200       OIS 3 -18.3 7.3 3.2 1 1 1 

Saint-Césaire France not given RPB3100       OIS 3 -19.4 6.7 3.2 4 4 4 

Saint-Césaire France not given RPB3700       OIS 3 -19.4 6.5 3.2 4 4 4 

Vergisson II France bone OxA-7758 OxA-7758 35700 2400 OIS 3 -19.604 6 3 17 18 17 
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Supplementary Table 5: Bone collagen δ13C and δ 15N of late Pleistocene Bovids from the UK and southwest France collated from published 
literature. 

Site Name Country Species Element Lab code 

Direct 14C date 

Lab Code 

Direct 
14C 

date Age category 

Collagen 

d13C 

Collagen 

d15N 

Collagen 

C:N ratio 

Date 

reference 

Carbon 

(coll) 

reference 

Nitrogen 

(coll) 

reference 

Ash Tree Cave        UK Bison priscus 

cervical 

vertabra 

OxA-

15003 57700 > Banwell MAZ site -20.6 5.6 3.2 1 1 1 

Windy Knoll UK Bison priscus radius 

OxA-

15001 51700 > Banwell MAZ site -20.7 4.6 3.2 1 1 1 

Steetley Quarry UK Bison priscus metacarpal 

OxA-

15000 53200 > Banwell MAZ site -20.6 9.4 3.2 1 1 1 

Ash Tree Cave        UK Bison priscus metatarsal 

OxA-

13800 54100 > Banwell MAZ site -20.4 9 3.3 1 1 1 

Banwell Bone Cave UK Bison priscus        calcaneum 

OxA-

14136 59500 > Banwell MAZ site -20.3 10.8 3.2 1 1 1 

Banwell Bone Cave UK Bison priscus        calcaneum 

OxA-

14138 53900 > Banwell MAZ site -20.7 10.6 3.1 1 1 1 

Hunter’s Lodge Inn 

Sink UK Bison priscus        scapula 

OxA-

13566 54800 > Banwell MAZ site -20.6 8.8 3.2 1 1 1 

Goat's Hole (Paviland) UK Bison not given OxA-6932 32600 950 OIS3 -20.2 9.5 2.9 2 2 2 

Kendrick’s Cave  UK Bovine humerus 

OxA-

11726 12310 50 GI-1ed -20 2.8 3.2 3 3 3 

Goat's Hole (Paviland) UK Bison not given 

OxA-

13435 30320 170 OIS3 -19.4 10.2 3.2 4 4 4 

Goat's Hole (Paviland) UK Bison not given 

OxA-

13418 31250 230 OIS3 -20.2 8.4 3.3 4 4 4 

Goat's Hole (Paviland) UK Bison not given OxA-6924 31600 850 OIS3 -19.5 7.9 2.9 2 2 2 

Goat's Hole (Paviland) UK Bos/Bison not given OxA-6926 26820 460 OIS3 -20.2 8.8 3 2 2 2 

Goat's Hole (Paviland) UK Bos/Bison not given OxA-6925 29850 700 OIS3 -19.9 6.2 3 2 2 2 

Foxhole Cave UK Bos/Bison sacrum 

OxA-

25158 28310 290 OIS3 -22.1 3.5 3.2 5 5 5 

Foxhole Cave UK Bos/Bison scapula 

OxA-

25157 30750 390 OIS3 -19.5 5.5 3.2 5 5 5 

Pin hole Cave UK Bovini 

partial right 

tibia 

OxA-

11976 40720 390 OIS3 -20.4 2.5 3.3 1 1 1 

Pin hole Cave UK Bovini 

left 

radius/ulna 

OxA-

13591 48000 1000 OIS3 -19.8 6.6 3.1 1 1 1 
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