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Abstract 21 

Musculoskeletal injuries and disorders are the leading cause of physical disability worldwide and 22 

a considerable socioeconomic burden. The lack of effective therapies has driven the development 23 

of novel bioengineering approaches that have recently started to gain clinical approvals. In this 24 

review, we first discuss the self-repair capacity of the musculoskeletal tissues and describe causes 25 

of musculoskeletal dysfunction. We then review the development of novel biomaterial, 26 

immunomodulatory, cellular, and gene therapies to treat musculoskeletal disorders. Lastly, we 27 

consider the recent regulatory changes and future areas of technological progress that can 28 

accelerate translation of these therapies to clinical practice.  29 



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive 
version was published in Science Translational Medicine 14, (2022-10-12), doi: 10.1126/scitranslmed.abn9074. 

INTRODUCTION 30 

The musculoskeletal system is an interconnected multi-tissue system comprised of skeletal muscle, 31 

tendon, bone, ligament, and cartilage. These tissues collectively function to provide structural 32 

support, stability, form, and locomotion to mammals. With day-to-day activities, musculoskeletal 33 

tissues are subjected to various mechanical loads that can result in small lacerations and tears. 34 

Whereas tendon, ligament, and cartilage have limited self-repair capacity, skeletal muscle and 35 

bone can regenerate following minor injuries. However, larger or chronic insults can overwhelm 36 

the self-repair capacity of musculoskeletal tissues leading to a range of musculoskeletal disorders 37 

(MSDs). These disorders are characterized by tissue degeneration, functional decline, debilitating 38 

pain, disability, and even death.  39 

MSDs affect 1.7 billion people worldwide (1) and can arise from traumatic injury, aging, 40 

autoimmune disease, or genetic mutations. Less severe MSDs are treated with physical 41 

rehabilitation and pharmaceuticals, while severe defects require surgical interventions including 42 

tissue grafting or the implantation of orthopedic devices. Autologous grafts (autografts) remain the 43 

gold-standard care for patients with severe MSDs, however, their use is hampered by donor site 44 

scarcity, morbidity, and pain. While cadaveric allografts or xenografts are frequently used to 45 

address the limited availability of autografts, they exhibit immunogenic risks and impaired tissue 46 

regeneration. Encouragingly, the use of non-biological orthopedic devices has shown increasing 47 

clinical success; yet, potential fibrotic response and suboptimal integration with host tissue can 48 

lead to graft failure long-term.  49 

To overcome these limitations, researchers have been developing diverse bioengineering 50 

approaches towards new and improved therapies for musculoskeletal disorders. For example, 51 

advances in innovative bio-instructive and responsive biomaterials have led to the development of 52 



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive 
version was published in Science Translational Medicine 14, (2022-10-12), doi: 10.1126/scitranslmed.abn9074. 

next generation synthetic grafts and drug delivery systems that have shown promising results in 53 

animal models of MSDs (2). Improved methods to differentiate human induced pluripotent stem 54 

cells (hiPSCs) into various lineages and expand progenitor cells have opened doors to novel cell 55 

therapies with improved efficacy (3-5). The generation of more complex and biomimetic tissue-56 

engineered equivalents holds the potential to produce patient-derived biological grafts and more 57 

clinically predictive drug screening platforms (6, 7). Recent advances in the gene therapy field 58 

have resulted in the first successful clinical trials for rare neuromuscular diseases (NMDs) (8). The 59 

promise of cell and gene therapies is further enhanced by the rapid advent of clustered regularly 60 

interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology 61 

that provides unprecedented capability to precisely manipulate the human genome and epigenome 62 

(9, 10). Nevertheless, multiple hurdles and opportunities such as limited therapeutic efficacy, 63 

patient-specific responses, harnessing immune system capabilities, regulatory barriers, and high 64 

manufacturing costs must be overcome before widespread clinical use of these novel technologies. 65 

In this review, we first discuss the intrinsic self-repair capacity of the musculoskeletal system. 66 

Next, we describe the causes of musculoskeletal dysfunctions and current state of patient care. We 67 

then review the contemporary bioengineering approaches to treat musculoskeletal disorders that 68 

are either recently approved for clinical use or in preclinical development. Lastly, we consider the 69 

avenues of future technological progress required to overcome the remaining barriers to translating 70 

these novel bioengineering therapies into clinical reality.  71 



This is the author's version of the work. It is posted here by permission of the AAAS for personal use, not for redistribution. The definitive 
version was published in Science Translational Medicine 14, (2022-10-12), doi: 10.1126/scitranslmed.abn9074. 

MUSCULOSKELETAL REGENERATION  72 

Regeneration of musculoskeletal tissues critically depends on the ability of the innate and adaptive 73 

immune systems to orchestrate processes of: (i) damaged tissue clearance, (ii) expansion of tissue-74 

specific progenitor cells, and (iii) tissue repair, remodeling, and/or de novo tissue formation (Fig. 75 

1A). Regeneration is initiated by release of damage-associated molecular pattern molecules 76 

(DAMPS), chemokines, and lipid mediators from damaged cells to recruit neutrophils, 77 

monocytes/macrophages, and T-lymphocytes to the injury site (11). The recruited immune cells 78 

initially phagocytose cellular debris and) secrete multiple cytokines [e.g., interleukin 1α (IL-lα) 79 

and tumor necrosis factor a (TNFα)] to induce a pro-inflammatory environment that recruits 80 

additional immune cells and stimulates resident stem cell proliferation for subsequent tissue repair 81 

(12). Specifically, this stage of regenerative response is associated with pro-inflammatory 82 

transition of macrophages from an M0 to M1 phenotype and accumulation of CD8+ and CD4+ T 83 

helper 1 (Th1) and Th17 T cells (11). The final stage of tissue regeneration, tissue repair and 84 

remodeling, is characterized by loss of pro-inflammatory immune cells and accumulation of anti-85 

inflammatory M2 macrophages and T cells (i.e., CD4+ Th2 and Tregs). These cells secrete anti-86 

inflammatory cytokines such as IL-4, IL-10, and IL-13 to repress the local inflammatory response 87 

and support tissue repair, remodeling, and/or de novo tissue formation (12). 88 

Adult skeletal muscle regeneration is dependent upon resident muscle stem cells, named satellite 89 

cells (SCs), which inhabit a complex stem cell niche underneath the myofiber basal lamina (13) 90 

(Fig. 1B). SC fate is regulated by expression of the paired-box transcription factor 7 (PAX7) and 91 

the myoblast determination protein (MYOD1). Upon injury, SCs transition from being quiescent 92 

(PAX7+/MYOD-) to becoming activated, proliferative SCs (PAX7+/MYOD+). Activated SCs 93 

either return to quiescence for future rounds of muscle regeneration, or commit to differentiation 94 
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by loss of Pax7 and then either fuse into damaged/regenerating myofibers or form de novo 95 

myofibers (13). SC activation and proliferation is stimulated by pro-inflammatory cytokines and 96 

release of extracellular matrix (ECM)-sequestered hepatocyte growth factor (HGF) and fibroblast 97 

growth factor 2 (FGF2) (13). SC differentiation and muscle fiber formation is triggered by a shift 98 

to an anti-inflammatory immune response and subsequent proliferation of fibro-adipogenic 99 

progenitor cells (FAPs) in response to IL-4 (14). FAPs are muscle resident multipotent 100 

mesenchymal progenitor cells that can differentiate into fibroblasts, adipocytes, and possibly 101 

osteoblasts and chondrocytes (15, 16). FAPs support muscle regeneration by secreting ECM 102 

proteins (15, 17) and cytokines that regulate muscle formation (15, 18) and the inflammatory 103 

microenvironment  (19). Perturbed inflammatory responses result in excessive FAP accumulation 104 

and subsequent fibrosis and adipogenesis, which are hallmarks of impaired muscle regeneration 105 

(16-18).  106 

Adult bone also undergoes healing upon substantial fracture via a four-step process (20) (Fig. 1C). 107 

First, hematoma formation around the fracture site results in clearance of necrotic debris and 108 

recruitment of immune cells. The initial pro-inflammatory microenvironment stimulates resident 109 

osteogenic progenitor cell proliferation and recruitment of circulating mesenchymal stem cells 110 

(MSCs) to the injury site. Second, MSCs differentiate into chondrocytes to form soft 111 

fibrocartilaginous calluses to stabilize the fracture. Third, the cartilage tissue is subsequently 112 

remodeled and replaced with bone to form a hard callus. Fourth, a long period of bone remodeling 113 

begins which ultimately restores the original geometry and mechanical properties of the bone. 114 

Proper execution of this healing process requires four key criteria, collectively referred to as the 115 

‘diamond concept’ for fracture healing (21). These criteria include: cells with osteogenic potential, 116 

an osteoconductive matrix, osteoinductive mediators, and mechanical stability. Bioengineering 117 
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therapeutic approaches aimed at improving or restoring bone regeneration therefore augment one 118 

or more of these factors. Mulitple growth factors serve as osteoinductive mediators across these 119 

steps. Fibroblast growth factor (FGF), platelet-derived growth factor (PDGF), insulin-like growth 120 

factor (IGF), transforming growth factor beta (TGFβ), and bone morphogenetic proteins (BMPs) 121 

support recruitment, proliferation, and differentiation of osteoprogenitor cells. 122 

While muscle and bone possess high regenerative capacity, adult ligament, tendon, and articular 123 

cartilage (AC) are much less regenerative, despite initiating a typical wound healing response to 124 

tissue damage. Ligament and tendon repair is characterized by an initial inflammatory response 125 

triggered by rupture of tendon vessels, hematoma formation, and infiltration of inflammatory cells 126 

(22). The inflammatory signals lead to activation and proliferation of resident tendon 127 

stem/progenitor cells (TSPCs), which secrete type III collagen-rich ECM. While this immature 128 

matrix initially supports rapid structural repair and neovasculogenesis, it fails to remodel long-129 

term and is partially replaced by Type I collagen. The resulting fibrous tissue has inferior 130 

biomechanical properties compared to healthy tissue and is more prone to subsequent re-injury 131 

(22). In AC, DAMPs secreted by injured cells trigger proliferation and migration of cartilage-132 

derived progenitor cells (CPCs) and other joint-resident MSCs (23). However, migration of these 133 

cells to the site of injury is limited by the dense cartilaginous ECM network, while the lack of 134 

vasculature further delays reparative immune response which has to rely on the diffusion of 135 

nutrients and signaling factors (Fig. 1D). Together, the lack of robust tissue repair creates a long-136 

term pro-inflammatory microenvironment characterized by high concentrations of TNFα and IL-137 

lα, which inhibit chondrocyte proliferation and differentiation (23, 24). Additionally, chronic 138 

increase in reactive oxygen species and nitric oxide induces chondrocyte senescence and ECM 139 

degradation, leading to progressive cartilage degeneration (25).  140 
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 141 

BIOENGINEERING THERAPEUTIC APPROACHES 142 

Biomaterial therapies 143 

Biomaterial-based approaches to musculoskeletal tissue repair hold great promise as the mainstay 144 

therapy in the future. Currently, the most clinically advanced and utilized biomaterials do not 145 

contain live cellular components due to ease of regulatory approval, lower cost, and ability to be 146 

commercialized as off-the-shelf products. Based on their source, biomaterials can be classified as 147 

synthetic or naturally derived. Synthetic biomaterials such as organic and inorganic polymers, 148 

metals, or ceramics permit greatest control over structural design, mechanical properties, and 149 

degradation rates. However, they lack the complex biological cues found within natural 150 

biomaterials that increase regenerative and translational potential. Natural biomaterials are 151 

typically purified ECM proteins (e.g., collagen, fibrin, and laminin) or polysaccharides (e.g., 152 

hyaluronan, chitosan, and alginate) that have high biological activity but lack mechanical strength. 153 

The simplest biomaterial-based therapies for musculoskeletal tissue repair provide mechanical 154 

support but limited biological guidance cues and can induce sustained pro-inflammatory responses 155 

via the foreign body response. For implantable scaffolds used in articular cartilage repair, such as 156 

TruFit CB [composed of poly(lactic-co-glycolic acid) (PLGA) and calcium sulphate], this has 157 

resulted in poor long-term clinical outcomes and the need for revision surgeries (26). More 158 

advanced biomaterial strategies provide not only structural support but also biomechanical 159 

guidance cues or bioactive signals to augment native tissue regeneration or immune responses. For 160 

example, viscosupplementation typically utilizes hyaluronic acid to both enhance the rheological 161 

properties of synovial fluid and promote an anti-inflammatory response in damaged cartilage (27). 162 
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Alternatively, biomaterials can be used to deliver progenitor cells in biomimetic stem cell niches 163 

or to fabricate differentiated tissue-engineered biomimetic equivalents for transplantation.  164 

Bioinductive scaffolds 165 

For clinical success, biomaterial scaffolds for musculoskeletal regeneration need to be 166 

bioinductive to promote cellular infiltration, tissue remodeling, and long-term mechanical 167 

stability. Within such scaffolds, tissue-specific microenvironments can be created by tailoring 168 

biophysical characteristics including stiffness, microstructure, porosity, and degradation. 169 

Specifically, biomechanics of polymer scaffolds can be controlled by choice of monomer, 170 

molecular weight, polydispersity, crosslinking, blending, and use of interpenetrating networks 171 

(Fig. 2A) (2), with resulting bulk stiffness being of utmost importance to ensure the implanted 172 

scaffold can withstand anticipated biomechanical loads. Since the local tissue stiffness regulates 173 

stem cell fate and differentiation (28), material choice and processing should be carefully chosen 174 

based on the tissue of interest: skeletal muscle (~10-20 kPa), cartilage (~1-10 MPa), and bone (~1-175 

20 GPa). Scaffold porosity can be further tuned to enhance cellular infiltration, vascularization, 176 

and mass transport, but at the expense of mechanical stiffness. This trade-off can be minimized by 177 

modifying surface topography and chemistry to direct cell fate and differentiation independent of 178 

stiffness (29). Because musculoskeletal tissue interfaces such as the myotendinous junction and 179 

osteochondral unit are most prone to failure, interfacial scaffolds can be designed to support multi-180 

tissue repair with long-term therapeutic benefit. These scaffolds are composed of tissue-specific 181 

phases/units that provide optimal biomechanical and bio-instructive properties to support cell-182 

specific differentiation (30), including graded transitions in tissue structure and mechanics. 183 

Triphasic scaffolds such as MaioRegen, comprised of different ratios of type I collagen and 184 
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hydroxyapatite organized into three layers, have successfully treated osteochondral defects in 185 

clinics (31).  186 

An additional design consideration is the creation of tissue-specific stem cell niches to guide stem 187 

cell fate and tissue formation, which can be achieved via use of specific ECM composition, cell 188 

adhesion moieties, topological cues, and morphogen tethering. Minimally processed native ECM 189 

proteins, such as laminin, collagen, and fibronectin, have favorable characteristics for cell 190 

adhesion, growth, and differentiation and need to be incorporated into synthetic materials to 191 

achieve the same effects. Batch-to-batch variability of native proteins can be decreased by use of 192 

synthetic cell adhesion peptides (e.g., RGD, IKVAV) (32). Additionally incorporation of 193 

recombinant integrins such as α4β1 or α3/α5β3 along with niche-specific ECM proteins can be 194 

used to maintain SC quiescence (33) or promote osteogenic differentiation (34), respectively. Cell 195 

behavior and tissue growth can be further influenced by regulating scaffold features such as shape, 196 

aspect ratio, and curvature to control local topography (35, 36). Finally, the ideal biomaterial 197 

should be fully biodegradable and gradually replaced with regenerating tissue without loss of 198 

mechanical stability. The innate degradation and remodeling potential of natural materials can be 199 

modified through the formation of crosslinks, functionalization of active side groups, or 200 

incorporation of protease inhibitors. Synthetic polymers can be made biodegradable (e.g., 201 

polyesters) and tuned to meet the desired tissue regeneration rates via use of copolymers, polymer 202 

blends, enzyme cleavable bonds, or cell-mediated release of degradation products that additionally 203 

support tissue repair [e.g., liberated Ca2+ or PO4
2- ions from tricalcium phosphate (TCP) that 204 

stimulate osteogenesis (37)].  205 

An alternative bioinductive scaffold can be derived by chemically and enzymatically digesting 206 

organs to remove cellular material and generate decellularized ECM (dECM) (Fig. 2B). While 207 
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decellularization can alter tissue architecture, these scaffolds retain ECM proteins and biological 208 

cues such as cell binding motifs, growth factors, ECM-modifying enzymes, and matrix-bound 209 

nanovesicles (MBVs), which can direct anti-inflammatory and pro-regenerative immune and 210 

cellular responses upon implantation (38). Preserved tissue specificity of bioactive cues in dECM 211 

scaffolds can be further leveraged to guide tissue-specific biological programs both in vitro and in 212 

vivo (39). Because native architecture is maintained, dECMs can be implanted as biomimetic 213 

scaffolds that provide guidance cues for tissue growth and neurovascular integration. For example, 214 

dECM cancellous bone scaffolds coated with collagen-hydroxyapatite composites have been 215 

applied to robustly enhance osteogenesis (40). Alternatively, dECM can be processed into sheets, 216 

coating materials, or injectable hydrogels for in vivo or in vitro applications (41). When implanted, 217 

dECMs induce biomimetic pro- and then anti-inflammatory responses that promote cellular 218 

recruitment and tissue formation (42), although immune response type and strength are tissue-219 

specific and inherently variable (39). In a small clinical trial of 13 patients, dECM sheet 220 

implantation in combination with physical therapy was shown to support small increases in muscle 221 

mass and strength in a subset of patients with long-term volumetric muscle loss (VML) (7, 43). 222 

Nevertheless, the main long-term clinical use of dECMs will likely involve coating of synthetic 223 

implants to promote cell adhesion and cell/tissue delivery (41). 224 

Growth factors and platelet rich plasma 225 

Systemic or local delivery of soluble growth factors leads to their rapid degradation and loss of 226 

bioactivity, resulting in limited clinical benefits (44). Alternatively, growth factors can be 227 

conjugated to biodegradable biomaterials and their release profile controlled by regulation of 228 

biomaterial degradation rate. In skeletal muscle, SC proliferation or hypertrophy have been 229 
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stimulated by sustained biomaterial release of FGF2 (45), HGF (46), or insulin-like growth factor 230 

I (IGF-I) (45). Alternatively, SC proliferation has been stimulated by nanoparticle delivery of the 231 

small molecule drugs CEP-701 (47) or combined forskolin and RepSox delivery (48). In 2002, the 232 

food and drug administration (FDA) approved Infuse, a collagen sponge containing BMP-2, for 233 

treatment of long bone fractures, non-unions, and spinal fusions. However, multiple side-effects 234 

including ectopic bone formation, osteoclast activation, bone-cyst formation, and inflammatory 235 

complications have been reported (49). Alternative delivery scaffolds and additional growth 236 

factors or bisphosphonates have been used to replace BMP-2 or minimize its side effects (49, 50). 237 

Due to its important roles in tissue repair, vascularization has been stimulated in studies by delivery 238 

of proangiogenic factors such as vascular endothelial growth factor (VEGF) and platelet derived 239 

growth factor BB (PDGF-BB). Temporally regulated release of VEGF followed by PDGF, in 240 

particular, has resulted in the formation of stable mature vessels (51). Additionally, combined 241 

delivery of angiogenic and myogenic (52) or osteogenic (53) growth factors can synergistically 242 

augment tissue regeneration. 243 

Articular cartilage defects in small animal models have been repaired utilizing IGF-I and/or 244 

members of the TGF-β, BMP and FGF families to stimulate chondrocyte proliferation and 245 

differentiation, ECM synthesis, and to decrease the catabolic actions of IL-1 and matrix 246 

metalloproteinases (54). However, the dense and highly negatively charged cartilaginous ECM 247 

network restricts growth factor diffusion and penetration into deeper cartilage areas, limiting 248 

successful translation to larger-sized human defects (55). These size and charge limitations can be 249 

overcome by use of cationic nanoparticle delivery vehicles such as polyamidoamine dendrimers 250 

(56) and avidin (57) to enable successful growth factor delivery into human-sized cartilage defects.  251 
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Since robust tissue repair requires the presence of multiple growth factors, delivery of single or 252 

select factors may be insufficient for complete regeneration. For example, intra-articular injections 253 

of recombinant human FGF-18 in patients with knee osteoarthritis failed to improve primary study 254 

outcomes (55). As such, the high growth factor content of platelet-secreted α-granules has been 255 

used to stimulate tissue regeneration by injections of centrifugation-concentrated platelet rich 256 

plasma (PRP) (58). Alternatively, sonication or freeze-thawing of PRP to generate a cell-free 257 

platelet lysate (PL) containing an undefined cocktail of multiple growth factors (e.g., IGF-1, 258 

VEGF, and EGF) and cytokines (e.g. IL-6, IL8, and TNFα) has also been utilized as an autologous 259 

pro-regenerative therapy in multiple pathological settings (58). To date, despite promising small 260 

clinical studies of skeletal muscle (59), bone (60), and cartilage (61) repair, there has been 261 

insufficient evidence to support the wide utility of PRP or PL as a regenerative therapy (62). 262 

However, it is possible that sustained and regulated PRP release via polymeric conjugation could 263 

increase the therapeutic efficacy of this approach, as observed in wound healing applications (63). 264 

Additionally, supplementing or depleting specific growth factors within PRP could yield more 265 

substantial and reproducible regenerative responses (64). 266 

Immunomodulatory biomaterials 267 

Due to the pivotal roles of the immune system in regulating tissue regeneration, 268 

immunomodulation has become an attractive strategy to induce and control tissue repair. 269 

Clinically, autoinflammatory and autoimmune diseases have been traditionally treated with 270 

various immunosuppressants. However, chronic and broad immunosuppression results in 271 

suboptimal regenerative response and increased risk of opportunistic infections (65). Next-272 

generation corticosteroids with increased specificity and decreased side effects, such as 273 

vamorolone, could improve regenerative response of muscle tissue, as seen in recent clinical trials 274 
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in patients with Duchenne muscular dystrophy (DMD) (66). Alternatively, specific targeting of 275 

immune cells such as myeloid-derived suppressor cells (MDSCs), which suppress T and B cell 276 

responses and correlate with impaired bone healing in mice (67), may lead to more clinically 277 

successful systemic immunotherapies. To circumvent the complexities of modulating systemic 278 

immune responses, a range of immunomodulatory biomaterials have been developed to enhance 279 

regenerative outcomes. Historically, the desired immunomodulatory trait for implanted 280 

biomaterials has been the suppression of immune response to prevent foreign body response. 281 

However, it has become evident that an acute pro-inflammatory phase following trauma 282 

characterized by an M1 macrophage response is beneficial or even necessary for regeneration (68). 283 

Muscle regeneration, for example, can be accelerated by amplifying the M1 pro-inflammatory 284 

cascade with the addition of M1, but not M0, macrophages (69, 70), or by transient overexpression 285 

of granulocyte-macrophage colony-stimulating factor (GM-CSF) (71), both of which result in 286 

increased SC proliferation. Nevertheless, M2 macrophage response is also necessary to complete 287 

tissue regeneration and healing response (72). Temporal modulation of immune responses by 288 

inducing biomimetic short- and long-term pro- and anti-inflammatory responses, respectively,  289 

may be optimal for augmenting endogenous or implant-induced tissue regeneration. Specific 290 

immune responses can be stimulated by adjusting physicochemical properties of biomaterials such 291 

as surface charge, wettability, and porosity. For example, anionic and hydrophilic surfaces inhibit 292 

monocyte adhesion and promote anti-inflammatory responses, whereas cationic and hydrophobic 293 

surfaces promote monocyte adhesion and inflammatory signals (73, 74). Larger biomaterial pore 294 

sizes have been shown to correlate with increased M2 macrophage polarization compared with 295 

smaller pore sizes (75). Softer substrates and topographies that induce a more elongated cell shape 296 

can promote M2 polarization. Certain materials such as low molecular weight xanthan gum (76) 297 
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and squid-derived collagen type II (77) show chondroprotective anti-inflammatory properties. 298 

Additionally, biomaterials can serve as drug-release vehicles to modulate immune responses. For 299 

example, IL-4-loaded gold nanoparticles stimulate M2 immune responses and promote muscle 300 

regeneration and contractile force recovery in acute injury (78) and DMD (79) mouse models.  301 

CELLULAR THERAPIES 302 

While acellular therapies can promote cellular infiltration and augment tissue regeneration, they 303 

have limited capacity to restore substantial cell loss in critically sized defects. Cell-based therapies, 304 

on the other hand, can provide cellular material for tissue formation and/or secreted paracrine 305 

factors to augment endogenous regenerative response (Fig. 3). Cell based therapies typically 306 

utilize primary progenitor cells or cells derived from hiPSCs.  307 

Primary cell therapy 308 

Primary progenitor cells have limited expansion potential in vitro and their extended culture can 309 

induce permanent alterations, leading to reduced therapeutic potential (Fig. 3A). The two main 310 

primary cell types used in musculoskeletal therapies have been tissue-resident progenitor cells and 311 

MSCs. Specifically, in vitro expanded SCs have long held promise for treatment of NMDs and 312 

VML. However, their clinical use in DMD patients was unsuccessful due to poor cell survival, 313 

motility, and engraftment/fusion with host myofibers (80). Poor SC engraftment was largely 314 

attributed to traditional in vitro culture that yielded spontaneous activation and rapid loss of PAX7 315 

expression in SCs, caused by their displacement from the in vivo niche  (81). Therefore, a clinically 316 

relevant expansion protocol for SCs would need to maintain PAX7 expression and prevent 317 

activation, and/or to deactivate SCs prior to transplantation. Culture with pro-inflammatory 318 

cytokines and small molecules (82, 83) and use of soft culture substrates with muscle-like stiffness 319 

(83, 84) have shown some success with mouse SCs, although promising results with human SCs 320 
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are yet to be demonstrated. Similarly, successful deactivation or return to quiescence of expanded 321 

SCs has not been achieved, though SC quiescence can be maintained in a complex media at the 322 

expense of limited cell expansion (33).  323 

For the last 30 years, autologous chondrocyte implantation (ACI) has been clinically utilized to 324 

treat focal cartilage defects (85). In vitro-expanded chondrocytes are injected into the defect and 325 

retained at the site of injection by a periosteal flap or more recently by a collagen or synthetic 326 

membrane. However, extensive chondrocyte expansion in vitro results in cell dedifferentiation 327 

characterized by loss of chondrogenic gene expression and adoption of a fibroblastic morphology 328 

and gene expression (86). Encouragingly, extensively passaged chondrocytes can regain 329 

chondrogenic potential by acute 7-day rejuvenation culture in three-dimensional (3D) aggregates 330 

in media supplemented with chondrogenic growth factors, the glycosaminoglycan-degrading 331 

enzyme chondroitinase-ABC, and collagen crosslinker lysyl oxidase-like 2 (87). Lastly, 332 

multipotent MSCs, which can differentiate into bone, cartilage, and adipose tissue, have been 333 

trialed extensively in patients over the last 25 years. Direct MSC injection can be conducted with 334 

minimally invasive techniques and has shown promise in small clinical trials for treatment of 335 

delayed and non-union fractures (88). To date, at least 10 MSC therapies have been approved 336 

worldwide, though not by the FDA (89). The clinical efficacy of MSC therapies has been variable 337 

due to divergent cell culture procedures and loss of MSC therapeutic potential with passaging. 338 

Similar to muscle progenitors, expanding MSCs on soft hydrogel substrates can promote their 339 

stemness leading to improved therapeutic potential (90). 340 

hiPSC-based therapy 341 

Shortcomings of primary cell expansion can be overcome by using hiPSCs, which continuously 342 

expand and can be differentiated into any somatic cell type. State-of-the-art hiPSC-derived muscle 343 
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progenitor cells (iMPCs) are generated via directed differentiation methods that yield 344 

heterogeneous cell population of SC-like cells, activated SCs, and differentiated myotubes (91). 345 

While various cell surface markers  have been identified to purify iMPC subpopulations with 346 

increased therapeutic potential (91, 92), these cells still have 50 to 60-fold lower engraftment 347 

efficiency than native SCs, do not always localize to the SC niche, and transcriptionally resemble 348 

fetal myoblasts (5, 93). Encouragingly, 4 weeks after implantation, engrafted iMPCs adopted a 349 

more adult-like SC transcriptome and when reimplanted engraft with 20-fold higher efficiency, 350 

suggesting that the in vivo microenvironment enhances iMPC maturity and function (93). 351 

Osteoblasts and chondrocytes can be obtained from hiPSC-derived MSCs (iMSCs) which exhibit 352 

tri-lineage differentiation potential, albeit with lower adipogenic potential than primary MSCs. 353 

Encouragingly, compared to primary MSCs, iMSCs have increased expansion potential and 354 

rejuvenation molecular signature, and can successfully treat critical-size porcine bone defects (3, 355 

94). Osteoclasts can be derived from hiPSC-derived macrophages and stimulate mature bone 356 

formation in vitro and in vivo when cultured with iMSCs (95). The use of single-cell RNA 357 

sequencing and CRISPR-Cas9 driven fluorescent reporters can allow identification and 358 

purification of osteoblasts (4, 96) and chondrocytes (97, 98) with increased differentiation and 359 

therapeutic potential. Nevertheless, generation of adult-like mature cells and tissues from hiPSCs 360 

remains an important challenge (Fig. 3B). Additionally, long-term safety of hiPSC therapies 361 

requires the elimination of their tumorigenic potential by ensuring use of non-integrating 362 

reprogramming factors, uniform and robust differentiation protocols, and identification and 363 

removal of pluripotent or immature, proliferating cells (99). Specifically, generation of hiPSC lines 364 

with drug-inducible suicide genes can be utilized to partially or fully eradicate transplanted cells 365 

in cases of adverse outcomes in vivo (100). 366 
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Cell delivery 367 

Cells can be delivered to the site of tissue injury via localized injection or systemic delivery. 368 

Systemic cell delivery prevents the need for surgical interventions but requires that cells cross the 369 

endothelial barrier and home to the injury site. As SCs cannot cross blood vessel walls, systemic 370 

cell therapies for NMDs have focused on intra-arterial delivery of CD133+ stem cells and 371 

mesoangioblasts, blood vessel-associated progenitor cells with myogenic potential. However, 372 

despite promising mouse studies, phase 1 clinical trials with these cells failed to improve muscle 373 

function and only resulted in rare detectable dystrophin myofibers in a single DMD patient (101, 374 

102). Development of systemic cell transplantation therapies for NMDs and MSDs will require 375 

considerable optimization to increase engraftment efficacy and minimize cell sequestration by 376 

filtering organs. Some progress in this area has been made with improving homing of MSCs to 377 

sites of inflammation via use of small molecules (103), growth factors (104), ECM proteins (105), 378 

hypoxia (106), or genetic manipulations (107). 379 

Additionally, survival and retention of implanted cells can be improved by their encapsulation in 380 

biomaterials to reduce shear stress and provide anti-apoptotic and pro-regenerative signals. For 381 

example, repair of murine VML has been facilitated by delivery of mesoangioblasts encapsulated 382 

in a polyethylene glycol-fibrinogen hydrogel (108), C2C12 cells on ultrathin PLGA ribbons (109), 383 

or SCs on collagen fibers coated with recombinant laminin and α4β1 integrin mimicking the native 384 

SC niche (33). In 2016, the matrix-induced autologous chondrocyte implantation (MACI) 385 

technique was approved by the FDA (110). Like ACI, MACI utilizes expanded autologous 386 

chondrocytes but transplants them on a porcine collagen type I-III membrane rather than within a 387 

cell suspension. The MACI procedure can be performed arthroscopically and with fibrin glue to 388 
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minimize vasculogenic hypertrophy, which further improves clinical outcome compared to ACI 389 

and is suggested to be capable of treating defects >2 cm2.  390 

The success of cell therapies critically depends on immune matching between the implanted cells 391 

and host patient. Autologous cell therapies circumvent this issue but time and cost to generate 392 

therapeutically relevant cell quantities are often prohibitive (111). Allogenic cell therapies require 393 

human leukocyte antigen (HLA) matching to minimize adverse immune reactions but may still 394 

require immunosuppression. Alternatively, HLA cloaking, where specific HLA isoforms are 395 

deleted using CRISPR-Cas9 technology, could theoretically allow generation of a small number 396 

of donor cell lines that are immunocompatible with most of the world’s population (112). MSCs 397 

are hypoimmunogenic due to the lack of class II HLA and co-stimulatory molecule expression 398 

required for T cell activation (89). Additionally, MSCs have highly potent immunomodulatory and 399 

immune-dampening properties via cell-cell contact and paracrine action, which contribute to their 400 

regenerative potential and broad applicability (89). However, MSC immunoprivilege can be lost 401 

following differentiation in vitro or in vivo, resulting in cellular cytotoxicity and immune rejection 402 

(113). Myoblast cell therapies can be augmented by the incorporation of macrophages that promote 403 

cell survival, proliferation, and migration (114). Similarly, incorporation of macrophages within 404 

engineered rat muscle tissues supports both in vitro muscle regeneration and in vivo survival (115).  405 

Tissue-engineering approaches 406 

Another cell-based strategy to treat musculoskeletal defects transplantation of functionally mature 407 

replacement tissues engineered in vitro using 3D scaffold or scaffold-free approaches (Fig. 3C). 408 

Scaffold approaches provide structural support and mechanical guidance cues to stimulate cell 409 

growth and tissue formation. Scaffold-free approaches rely on cell-generated ECM to support 410 

tissue development and include: cell sheets, aggregates/spheroids, and self-assembled tissues. Cell 411 
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sheets are usually formed by seeding cells on ECM-coated monolayers (116) or using 412 

thermoresponsive polymers, such as poly(N-isopropylacrylamide), which detach from culture 413 

plates upon decreased temperature (117). Scaffold-free tissues are inherently thin but can be 414 

formed into thicker constructs by rolling or stacking. Aggregates/spheroids can be formed by 415 

multiple methods including hanging drop cultures, microfluidics, and application of rotational 416 

forces to suspended cells (118), whereas self-assembled tissues are made by cell seeding at high 417 

density on non-adherent surfaces followed by tissue condensation (119). Compared to 418 

aggregate/spheroid cultures, self-assembled tissues can be reproducibly shaped into larger tissues 419 

with specific geometries. In the case of cartilage, the high cellularity of self-assembled tissues 420 

encourages integration into host tissue (120) and prevents stress-shielding that occurs in scaffold-421 

based constructs that impedes matrix remodeling and synthesis (121). Muscle tissues also require 422 

high cell density and can form within soft mechanical microenvironments provided by either 423 

scaffold (122-124) or scaffold-free (116, 125) approaches. Recreating native hierarchical bone 424 

architecture, on the other hand, typically necessitates use of scaffolds reinforced with ceramics, 425 

such as hydroxyapatite and TCP, to ensure sufficient mechanical strength (126). Tissue-specific 426 

differentiation of MSCs can also be promoted by use of multi-phasic scaffolds and incorporation 427 

of specific growth factors such as HGF/IGF-1 (127), BMP-2 (128, 129), and TGF-β1 (128) or 428 

TGF-β3 (129) to promote muscle, bone, and cartilage differentiation, respectively. Once formed, 429 

tissue maturation and functionality can be increased by use of tissue-specific biophysical stimuli 430 

such as electrical stimulation (130), cyclic mechanical stretch (131), cyclical hydrostatic pressure 431 

(132), and compression loading (133). While adult-like function can be achieved with tissue-432 

engineered bone and cartilage, gold-standard skeletal muscle tissues functionally and 433 

transcriptionally resemble embryonic to neonatal muscles.  434 
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For long-term clinical success, tissue-engineered muscle and bone implants must rapidly 435 

anastomose with the host neurovascular system to prevent cellular death and to facilitate seamless 436 

structural and functional integration between implant and host tissue. Vascularization is typically 437 

encouraged by either stimulating in vivo angiogenesis (i.e., host vessel ingrowth into the implant) 438 

or in vitro vasculogenesis (i.e., formation of vascular structures in the implant prior to 439 

transplantation). Angiogenesis in vivo can be stimulated using scaffolds with microgrooves (134), 440 

increased porosity (135) or surface roughness (136), but the rate of vascular ingrowth is typically 441 

insufficient to support survival of large grafts. To overcome this limitation, engineered tissue 442 

implants have been pre-vascularized in vitro by incorporation of vascular and supporting cell types 443 

(124, 135, 137). Increasing microvessel density and maturation through longer in vitro culture 444 

improves muscle implant perfusion, vascular density, and in vivo contractile function (137). 445 

Alternatively, thicker implants can be assembled by alternate stacking of muscle and vascular cell 446 

sheets (117).  447 

Innervation of engineered tissues implants can be stimulated biochemically via application of 448 

soluble (138, 139) or biomaterial-conjugated (140, 141) agrin, which promotes myotube 449 

acetylcholine receptor clustering and neuromuscular junction (NMJ) formation. Similarly, use of 450 

magnesium-based alloys or bulk metallic glass bone implants induces secretion of sensory 451 

neuropeptides, such as calcitonin gene related peptide, to promote osteogenesis of periosteum-452 

derived stem cells (142). Like angiogenesis-stimulating approaches, it is unlikely that biochemical 453 

stimulation will enable rapid innervation of large tissue implants. On the other hand, surgical 454 

neurotization increases innervation, neural integration, and regeneration of both muscle and bone 455 

implants but is therapeutically limited to small grafts (143, 144). This size limitation can 456 

theoretically be overcome by incorporation of neural progenitors to accelerate implant innervation. 457 
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For example, implantation of rodent or hiPSC-derived muscle tissues with incorporated 458 

motoneurons (MNs) promoted implant survival and NMJ formation, but did not support 459 

appreciable host neural integration (138, 145). Neural integration of implanted tissue can be further 460 

accelerated by the use of an engineered nerve conduit (ENC) to guide axonal growth toward the 461 

implant (146). In an ovine VML model, ENCs permitted functional innervation in 75% of 462 

implanted engineered muscle tissues and recovered force generation 3 months post-implantation 463 

(125). To date, this is the only preclinical animal model demonstrating the ability of in vitro 464 

engineered muscle tissues to restore large muscle defects. 465 

More recently, advances in 3D bioprinting have enabled the generation of more defined and 466 

complex vascular and neural structures within 3D engineered tissues by sacrificial molding or 467 

direct cell bioprinting (147). Both methods have resulted in the formation of muscle tissues up to 468 

1cm3, with incorporated vascular networks that anastomose with host vasculature and promote 469 

functional regeneration of VML injuries in rodents (145, 148). Alternatively, vascular ingrowth 470 

into thick 3D bioprinted tissues can be stimulated by use of porous bioinks leading to functional 471 

restoration after VML in mice (149). However, it is unclear if these approaches can be scaled from 472 

the <1 cm3 muscle volume to clinically relevant sizes for repair of human VML. 3D bioprinting 473 

can also be used to generate bone and cartilage tissues that mimic native cellular architecture (148, 474 

150). However, current 3D bioprinting materials fail to match the stiffness of bone and cartilage, 475 

which will require development of novel bioink composites comprised of chemically modified 476 

synthetic and natural polymers (150). Lastly, a fundamental factor in developing a clinically 477 

successful musculoskeletal graft therapy will be the incorporation of physical activity and 478 

rehabilitation post-surgery, as shown in rodent models where graft functionality, vascularization, 479 

and functional innervation were increased by forced running (151, 152).  480 
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Organ-on-chip (OOC) platforms 481 

Recent progress in muscle (153), bone (154), and cartilage (155) organ-on-chip (OOC) model 482 

systems has advanced our ability to study human musculoskeletal development, disease, and 483 

regeneration in vitro. Encouragingly, these tissue-engineered systems demonstrate expected 484 

physiological responses to pharmacological agents, showing promise for use in preclinical drug 485 

development studies. Additionally, multiple OOCs can be interfaced via microfluidic channels to 486 

enable unique studies of organ-organ crosstalk regulating musculoskeletal development and 487 

disease. Of particular interest are multi-tissue systems that anatomically diverge between mice and 488 

humans such as the NMJ and joints. Current human NMJ OOC models utilize compartmentalized 489 

chambers housing hiPSC-derived motor neurons and skeletal muscle tissues that enable 490 

visualization of neurite outgrowth and assessment of NMJ formation and function (156-158). 491 

While these systems mimic certain pathological features of NMDs such as impaired 492 

neuromuscular transmission in presence of myasthenia gravis patient serum (157), they lack 493 

maturation cues for achieving adult-like structure and function. For MSDs, joint-on-a-chip (JoC) 494 

systems that replicate native hierarchical structure and biomechanical loading hold potential for 495 

high-fidelity modeling of osteoarthritis (OA) and rheumatoid arthritis (RA) in vitro (155). 496 

Cartilage (159), subchondral bone (154), and synovial membrane (160) OOCs required for JoC 497 

systems have been already developed and utilized to study pathogenesis of OA and RA by applying 498 

hyper-physiological compression (159) or pro-inflammatory cytokines (155, 160). More complex, 499 

biomimetic JoC platforms will require additional incorporation of ligament, meniscus, Hoffa’s fat 500 

pad, and neuromuscular OOCs (155). Overall, despite the fact that NMD (156) and OA (159) OOC 501 

models successfully replicate functional responses to drugs, more comprehensive studies will be 502 

needed to determine if they have a better clinical predictive value than traditional animal models . 503 
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GENE THERAPIES 504 

Gene therapy approaches hold considerable potential to address various musculoskeletal diseases 505 

and deficits caused by genetic abnormalities, injuries, or aging. In the past two decades, rapid 506 

progress in the gene therapy field has led to initiation of more than 150 clinical trials (161). 507 

Multiple non-viral nucleic acid therapies such as antisense oligonucleotides (AONs) or plasmid 508 

gene deliveries have been developed to transiently modulate gene expression. The first clinically 509 

approved gene therapies for spinal muscular atrophy (SMA) and DMD have been exon skipping 510 

antisense oligonucleotide (AON) therapies. AONs are short (15-32 nucleotides) synthetic single-511 

stranded nucleic acid sequences designed to bind and mask specific splice motifs resulting in the 512 

skipping of an exon (162). This results in restoration of the open reading frame and the generation 513 

of a truncated but partially functional protein (Fig. 4A). To date, the FDA has granted accelerated 514 

approval to one AON for SMA as well as four AONs for DMD whereby skipping exons 45, 51, 515 

and 53 can together treat ~30-32% of patients. However, long-term follow up of eteplirsen showed 516 

low restoration of dystrophin protein that slows disease progression but is not curative (163). 517 

Current clinical trials (NCT04004065) for DMD utilize AONs with improved overall efficiency 518 

achieved by optimized molecular design (164) and conjugation to cell penetrating peptides (165). 519 

Overall, current AON therapies appear to have moderate benefit for patients and are costly due to 520 

short half-life of AONs requiring frequent re-administration.  521 

Rather than AONs, it is likely that the long-lasting ex vivo and in vivo gene overexpression or 522 

genome editing approaches will become widely used for treatment of MSDs (Fig. 4B). Ex vivo 523 

approaches are cell-based and can permit sustained localized expression of therapeutic genes (e.g., 524 

growth factors) without the off-target effects associated with systemic delivery or burst release 525 

(Fig. 4C). Here, patient-derived cells are typically isolated and transduced with retroviral or 526 
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lentiviral vectors containing the gene of interest. In 2016, the European medicines agency 527 

approved the first ex vivo gene therapy, Strimvelis, which utilizes autologous CD34+ cells 528 

retrovirally transduced with adenosine deaminase to treat severe combined immune deficiency 529 

(166). Additional approaches are aimed at modulating the inflammatory microenvironment to 530 

promote tissue regeneration by overexpression of cytokine genes such as TGF-β1, TGF-β3, IL-6, 531 

IFN-β, IGF-I, BMPs, FGF-2, and VEGF-C (167). Currently, the most clinically advanced gene 532 

therapy approach for cartilage is Invossa, where chondrocytes are transduced ex vivo to 533 

overexpress TGF-β1 and subsequently injected into the joint. Potential obstacles to this approach 534 

involve rapid clearance of injected cells and unintended attachment of cells on the synovial capsule 535 

rather than the articular cartilage. To overcome this obstacle, transduced cells can be embedded 536 

within 3D scaffolds to increase cell survival and retention at the implantation site (168). The 537 

feasibility of this approach has been shown in pigs where MSCs transduced with BMP2 and TGF-538 

β3 embedded within decellularized bone matrices efficiently repaired full-thickness cartilage 539 

lesions (169). Additionally, aged muscle stem cells or OA chondrocytes can be rejuvenated in vitro 540 

by transient expression of Yamanaka factors, LIN28, and NANOG (170). When injected into 541 

injured muscle, rejuvenated mouse SCs restored aged muscle function to that of younger mice, 542 

suggesting potential to reverse age-related deficits in musculoskeletal regeneration and function. 543 

Adeno-associated virus (AAV) therapy 544 

In vivo gene therapies for MSDs most frequently utilize recombinant adeno-associated viruses 545 

(AAVs) which can induce stable and sustained gene expression as a single-dose therapy. Systemic 546 

AAV therapy is however hampered by the lack of tissue specificity (tropism), low transduction 547 

efficiency, and liver sequestration (161), which can lead to low efficacy, off-target toxicity, and 548 

the need for vector quantities that surpass current manufacturing abilities. Additionally, patients 549 
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may be ineligible for therapy due to pre-existing neutralizing antibodies or may develop strong 550 

immune responses to administered AAVs (171) or restored nascent protein, as seen with 551 

dystrophin protein expression in DMD patients (172). To overcome these challenges, novel AAV 552 

capsids with increased tissue tropism and transduction efficiency and decreased immunogenicity 553 

have been developed by directed evolution or rational design (173, 174). For example, novel 554 

myoAAVs require over 100-fold lower dose to exert therapeutic effects in muscle compared to 555 

current clinically utilized AAVs (173, 174). Similarly, AAV capsids can be engineered with tissue 556 

targeting peptides such as (ASP)14 and (AspSerSer)6 that target bone (175). Furthermore, immune 557 

responses to both AAV and nascent protein expression can be decreased by novel engineered AAV 558 

capsids (176), immunosuppression (177), or by treatment with DNA plasmid vaccines (178). 559 

Long-term clinical success may also require the ability of AAVs to successfully transduce stem 560 

cell populations that maintain tissue homeostasis. Encouragingly, efficient AAV transduction of 561 

SCs has been recently demonstrated which can support sustained muscle gene expression despite 562 

high myonuclei turnover (174, 179).  563 

In 2019, Zolgensma, the first gene therapy for SMA, was approved for patients under the age of 564 

2. This therapy is a one-time injection of AAV9 carrying the full copy of the SMN1 gene required 565 

for motor neuron survival, and results in unprecedented patient survival and improved motor 566 

function (8). Unlike SMN1, dystrophin gene size (~14 kb) far surpasses the 4.7 kb packaging 567 

capacity of AAV, rendering gene therapy for DMD particularly challenging. Therefore, micro-568 

dystrophin (μDys) constructs with less than 30% of the full gene length have been developed and 569 

were shown to improve skeletal and cardiac muscle function in preclinical non-human primate 570 

models of DMD (177, 180). Currently, three independent phase 1/2a trials are ongoing, with one 571 

showing dystrophin expression in ~80% of muscle fibers and sustained functional improvements 572 
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one year post treatment (181). Additionally, follistatin gene therapy to stimulate SC proliferation 573 

and muscle regeneration (182) has shown a good safety profile in phase 1 trials (183, 184). By 574 

promoting endogenous muscle regenerative potential, this approach can be used to treat both 575 

genetic and non-genetic causes of muscle loss and atrophy. For bone therapy, systemic AAV 576 

delivery of artificial microRNAs (miRNA), has been applied to modulate osteoblast and osteoclast 577 

activities and encourage bone formation in osteoporotic mice. Artificial miRNAs embed short 578 

hairpin RNA (shRNA) into miR-33-derived miRNA scaffolds to decrease shRNA mediated 579 

toxicity and off-target silencing. Specifically, downregulation of RANK or cathepsin K in 580 

osteoclasts (175) or Schnuri-3 (SHN3) in osteoblasts (185) enhanced bone formation and 581 

mechanical properties. While intravenous AAV delivery is suitable for disorders that impact all 582 

muscles or bones, the avascular nature of cartilage necessitates direct injection (186) or 583 

biomaterial-based delivery (187) of viruses for efficient transduction. For example, intra-articular 584 

injection of AAVs coding expression of IL-1 receptor antagonist (IL-1Ra), a physiological 585 

inhibitor of pro-inflammatory IL-1 signaling, has been proposed to slow or halt OA progression 586 

(186).  587 

CRISPR-Cas9 therapy 588 

Owing to rapid progress in the field, CRISPR-Cas9 genome editing therapies have already entered 589 

clinical trials (188). In its most basic form, CRISPR-Cas9 method employs guide RNAs (gRNAs) 590 

to direct a Cas9 endonuclease to create double stranded breaks (DSBs) at precise genomic 591 

locations. The DSB can be used for gene knockout by nonhomologous end joining (NHEJ), which 592 

results in random DNA insertions and deletions (indels) and subsequent nonsense-mediated 593 

mRNA decay. Alternatively, gene activation or insertion can occur by introducing a DNA 594 

sequence at the DSB by homology directed repair (Fig. 4D). While the efficiency of HDR is much 595 
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lower than NHEJ, it enables diverse genome editing outcomes with unprecedented precision. In 596 

preclinical studies, CRISPR-Cas9 therapy restored dystrophin expression and improved muscle 597 

contractile function in DMD dogs (189), and editing and safety were shown in parallel to persist 598 

for 18 months in mice - although off-target effects increased with time after therapy (190). 599 

CRISPR-Cas9 gene editing that constitutively upregulates BMP-9 has been used to stimulate 600 

osteogenic differentiation of iMSCs and enhance in vivo bone regeneration (191), although 601 

persistent expression and release of growth factors is expected to cause long-term side effects. In 602 

contrast, CRISPR-Cas9 insertion of TNFαR (192) or IL-1Ra (192, 193) in the inflammation-603 

responsive chemokine (C-C) motif ligand 2 (CCl2) locus in implanted hiPSC-derived 604 

chondrocytes resulted in temporary, inflammation-dependent gene expression with improved 605 

therapeutic outcomes. Current work in the field is focused on increasing editing efficiency and 606 

decreasing potential off-target effects by use of Cas9 orthologues such as SaCas9 (9) to decrease 607 

Cas9 cargo size or CPF1 (10) to decrease off-target editing. The preferential systemic degradation 608 

of gRNAs is a main contributor to low editing efficiencies in vivo, which can be enhanced by 609 

increasing the gRNA to Cas9 ratio (194) and packaging gRNAs in a self-complementary (scAAV) 610 

rather than standard single-stranded AAV (ssAAV) (195). Additionally, the use of single-cut 611 

editing approaches (196) and screening of gRNAs in functional 3D tissues can further improve 612 

outcomes of CRISPR-Cas9 therapies (197). Together, rapid advances in the genome editing field 613 

hold great promise for curative therapies for a range of MSDs.614 
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TRANSLATIONAL CHALLENGES AND FUTURE APPLICATIONS 615 

Regulatory challenges 616 

Historically, regulatory approval has been a slow process, contributing to the high cost of clinical 617 

product development and translation (198). Bioengineering approaches for musculoskeletal 618 

regeneration face considerable regulatory hurdles to clinical translation due to their frequent 619 

classification as combinations of devices, biologics, and drugs (199). Generally, devices have more 620 

rapid approval times than biologics and drugs (~6 years versus ~9 years versus ~11 years, 621 

respectively), which markedly influences commercial therapeutic design (200). Bioengineered 622 

devices for joint and cartilage replacement discussed in this review are likely to be regulated as 623 

Class III devices and require more lengthy premarket approval (PMA) based upon preclinical and 624 

clinical trial data. Cell and tissue-based therapies may be regulated under human cells, tissues, and 625 

cellular and tissue-based products (HCT/Ps) or under a biologics license application (BLA). The 626 

FDA requirements to qualify for HCT/Ps designation include minimal cell manipulation and 627 

homologous application [i.e., for the same basic function(s) as in the donor]. As such, 628 

musculoskeletal cells derived and/or expanded in vitro and genetically modified or incorporated 629 

into tissue-engineered products will require a BLA and will be classified as a device, biologic, or 630 

drug. First regulatory approvals have been recently received for modified cell therapies (e.g., 631 

chimeric antigen receptor T cell therapies) (201) and combined biomaterial and cell therapies (e.g. 632 

MACI) under BLA regulatory approval (110). Drugs under treatment or emergency classification 633 

(e.g., therapies treating small populations, such as monogenic diseases, or diseases requiring rapid 634 

treatments such as COVID-19) can receive accelerated approval after limited clinical trials. 635 

To decrease regulatory burden multiple programs within the FDA (e.g., accelerated approval 636 

program, breakthrough therapy designation, and regenerative medicine advanced therapy 637 
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designation) and the European Medicines Agency (e.g., PRIME initiative) now exist to expedite 638 

clinical translation of new regenerative therapies via a risk-based approach (198, 202). The impact 639 

of these regulatory changes has been evident from the accelerated approval of gene therapies for 640 

NMDs that would not be granted under previous regulations. For example, the clinical trial design 641 

for the SMA gene therapy Zolgensma was streamlined by utilizing historical control cohorts due 642 

to small patient numbers and leveraging the ethical issues associated with denying patients with a 643 

low life expectancy (<2 years) (202). The Accelerated Approval Program decreases the threshold 644 

for approval from demonstrating measurable clinical benefit to showing a surrogate endpoint that 645 

predicts benefit for patients with severe disease and an unmet clinical need. This distinction 646 

allowed four AON exon-skipping drugs for DMD patients to be approved based on demonstrated 647 

dystrophin expression without a conclusive proof of a clinical benefit (162). While full approval 648 

for these non-cellular therapies will still require demonstration of long-term safety and efficacy, 649 

the new regulatory guidelines more rapidly grant patients access to potential life-extending or 650 

saving treatments, while providing important feedback for new or improved product development. 651 

However, it should be noted that accelerated approvals may result in commercialization of 652 

therapies with increased safety risks, such as in the case of Class II devices with 510(k) approval 653 

(203) where the device in question is only required to be equivalent to a preexisting approved 654 

“predicate” device (203). While this should increase approved device safety profiles, further 655 

refinements to PMA regulatory process are required to decrease development costs and promote 656 

more rapid clinical translation of novel therapeutics.  657 

Scale-up, manufacturing, and commercialization 658 

While the aforementioned regulatory changes are likely to expedite approvals of new 659 

musculoskeletal therapies, substantial challenges with their scaling and commercialization remain. 660 
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To date, synthetic acellular biomaterials have been the subject of the most advanced methods for 661 

scale-up and manufacture due to lack of biological variability and existing experience with their 662 

clinical use. However, further product-specific developments to identify optimal sterilization 663 

techniques, ensure mechanical and structural reproducibility, and define pre-implantation and 664 

long-term quality standards will be required to achieve widespread clinical and commercial 665 

success. Likewise, the development of clinically utilized biological biomaterials will demand 666 

industry-wide regulations and procedural standardizations, such as those established by the FDA 667 

to generate dECMs with reproducible immune responses. Similar industry-wide standardization 668 

and regulatory oversight will be required for procedures and products that alter biomaterial 669 

structure and function, such as electrospinning and nanoparticle-based drug delivery carriers.  670 

For cell-based therapies, efficient scale-up of stem cell production while retaining their therapeutic 671 

potential remains a key biological and technological challenge. Advances in understanding of stem 672 

cell biology, replicating in vivo tissue-specific niches with biomimetic scaffolds, and use of 673 

biochemical means to control stem cell fate and functional maturation will be critical for 674 

overcoming these barriers. Additional technological challenges are expected to arise when 675 

attempting to cost-effectively scale-up and automate multi-component self-renewal and 676 

differentiation culture systems (204). Equally important will be further infrastructural 677 

developments and regulatory guidance for the mass production, long-term cryogenic storage, and 678 

safe and timely delivery of cellular products. Due to associated complexities, widespread utility of 679 

personalized cell therapies will lag behind allogeneic cell use. The creation of allogeneic hiPSC 680 

and hiPSC-derived progenitor cell biobanks with characterized HLA haplotypes will follow the 681 

practices developed for bone marrow and cord blood biobanks. However, HLA matching does not 682 

guarantee immune privilege and necessitates immunosuppression in some patients. Alternatively, 683 
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HLA cloaking to generate a limited number of immunocompatible donor cell lines (112) would 684 

reduce total costs associated with hiPSC line derivation, line-specific differentiation, and the need 685 

for extensive pre-clinical validations. However, further optimization of HLA antigen expression 686 

and ensuring the absence of adverse off-target effects from CRISPR-Cas9 editing will be 687 

necessary. The most complex manufacturing and scale-up processes will need to be developed for 688 

multicomponent tissue-engineering therapies. In addition to the described requirements for 689 

biomaterial and cell-based therapies, tissue-engineered therapies will entail additional in vitro 690 

culture time, the incorporation of tissue-specific biophysical stimuli, and the use of multiple cell 691 

types leading to substantial increase in costs and challenges with quality control.  692 

Scale-up of gene therapies to large numbers of patients will require substantial advances in AAV 693 

manufacturing capabilities to meet expected clinical demands. Further optimization of AAV and 694 

promoter design to increase tissue tropism and transgene expression while decreasing liver 695 

sequestration will decrease viral titers required for clinical efficacy. Alternative non-viral gene 696 

delivery approaches (e.g., use of nanoparticles) could overcome immune limitations associated 697 

with AAVs (205), with in vivo barcoding and directed evolution technologies serving to optimize 698 

polymer carrier blends for increased tissue tropism and transfection efficiency (206). For CRISPR-699 

Cas9 and other genome engineering technologies, methods to rapidly identify optimal guide RNAs 700 

and increase editing efficacy will lead to decreased manufacturing costs. The last barrier to 701 

commercializing newly approved cell and gene therapies will be the establishment of national 702 

reimbursement policies, which so far have been hampered by the lack of cost-benefit analyses and 703 
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long-term efficacy data (207). However, ongoing longitudinal clinical studies and increased patient 704 

numbers are expected to produce viable strategies for reimbursement and commercialization.  705 

While cell and gene therapies for musculoskeletal regeneration will encounter unique challenges 706 

before eventual commercial use, a key factor driving the cost of approved pharmacotherapies is 707 

their high failure rate in clinical trials (208). In vitro tissue-engineered human OOC systems hold 708 

promise to increase predictivity and decrease costs of preclinical drug development studies. To 709 

date, up to 10 distinct OOCs have been multiplexed to form a human-on-a-chip (HOC) platform 710 

(6) and successfully model known (and identify unknown) toxicities due to organ cross-talk (209). 711 

However, approaches to circumvent the Crabtree effect (210), for example by using physiological 712 

human plasma-like media (211), will be needed to accurately model human mitochondrial toxicity, 713 

metabolism, and drug responses. Additionally, incorporating more complex immune system-on-714 

a-chip modules will account for roles of immune cells in tissue disease and regeneration (212). 715 

The industry-wide utilization of these platforms will further require that they can be automated, 716 

have non-destructive functional readouts, and are miniaturized to increase drug screening 717 

throughput (153). The modular nature of OOCs is suitable for modeling the complex 718 

musculoskeletal degeneration seen in multiple MSDs (213), and incorporating machine learning 719 

techniques during drug screening can allow accelerated development of combinatorial drug 720 

therapies at a fraction of the current cost. Despite their widespread use, preclinical murine models 721 

are limited by their small critical defects and poor modeling of human musculoskeletal structure, 722 

biomechanical loading, and immune responses, although mice with humanized immune system 723 

(214) can help address the latter issue. Large animal preclinical models thus remain the gold 724 
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standard for validating novel surgical therapies and the function of biomedical implants due to the 725 

ability to model human critical-size defects (215) and pathophysiology. 726 

CONCLUSION 727 

Over the last two decades, progress has been made in our ability to understand, model, harness, 728 

and augment endogenous tissue regenerative responses. Specifically, advances in biomaterial 729 

design, hiPSCs-based technologies, immunomodulation, OOC platforms, and machine learning 730 

have paved a way for the development of next-generation multi-component bioengineering 731 

therapies for musculoskeletal disease and dysfunction. The first approvals of such therapies in the 732 

past decade and continuous development of more streamlined regulatory guidelines will form a 733 

blueprint for rapid translation of successful preclinical studies into widespread clinical use. 734 

Together, we anticipate that in the next 10-20 years these advances will lead to a wave of new 735 

clinical therapies for MSDs.  736 
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Figure Legends 754 

 755 

Fig. 1. Musculoskeletal injury response. Immune and tissue-specific progenitor cell regulation 756 

of musculoskeletal injury response in vivo. (A) Following injury, neutrophils (NP) and monocytes 757 

(M0) infiltrate the injury site to phagocytose damaged tissue and secrete factors that control fate 758 

of infiltrating immune cells. Initially, proliferation of immune and resident progenitor cells is 759 

stimulated by a pro-inflammatory microenvironment created by cytokine secretion from 760 

macrophages (M1) and T cells (Th1 and Th17). Subsequent tissue regeneration and remodeling are 761 

orchestrated by a switch to an anti-inflammatory microenvironment created by cytokine secretion 762 

from macrophages (M2) and T cells (Tregs and Th2). (B) Skeletal muscle regeneration is 763 

orchestrated by muscle resident satellite cells (SCs) that in uninjured tissue are quiescent and 764 
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express the transcriptional factor PAX7. Upon injury, mechanical disruption and the pro-765 

inflammatory microenvironment stimulate SC activation, proliferation, and MYOD expression. 766 

Activated SCs then fuse together to form de novo myofibers, fuse into regenerating myofibers, or 767 

return to quiescence by loss of MYOD. (C) Bone remodeling is characterized by an initial 768 

hematoma formation and pro-inflammatory microenvironment that recruits circulating MSCs. 769 

These MSCs initially differentiate into chondroblasts and fibroblasts to generate a 770 

fibrocartilaginous callous, which is further remodeled into bone tissue by MSC-derived and 771 

resident osteoblasts. Successful remodeling relies on the balanced synthetic and resorption 772 

activities of osteoblasts and osteoclasts, respectively. (D) In response to injury, cartilage undergoes 773 

a weak pro-inflammatory response that results in no-to-limited recruitment and proliferation of 774 

cartilage-derived progenitor cells (CPCs). Consequently, cartilage does not regenerate and instead 775 

undergoes progressive degeneration and degradation. 776 
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 777 

Fig. 2. Immunomodulatory biomaterials for musculoskeletal regeneration. (A) Multiple 778 

biomaterial modifications including changes to surface topography, surface charge, wettability, 779 

and incorporation of bioactive molecules and immunomodulatory drugs can be used to regulate 780 

immune-mediated regenerative responses to tissue damage. (B) Decellularized extracellular 781 

matrices (dECMs) retain multiple biophysical cues which upon implantation stimulate immune 782 

cell infiltration and a pro-inflammatory response. Subsequent degradation of the implanted dECM 783 

induces release of growth factors and matrix-bound nanovesicles (MBVs) that promote immune 784 

cell conversion to an M2 phenotype and stimulate neighboring stem cell recruitment and, 785 

ultimately, regeneration via de novo tissue formation. 786 

 787 
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 788 

Fig. 3. Bioengineering approaches for cell-based musculoskeletal therapies. (A) Traditional 789 

cell culture platforms using tissue culture plastic (TCPS) poorly retain stem cell characteristics. 790 

Next generation culture platforms retain stem cell characteristics and facilitate cell expansion by 791 

better replicating the stem cell niche microenvironment. (B) Next generation single-cell 792 

sequencing and CRISPR-edited reporter lines allow development of more efficient differentiation 793 

protocols for derivation of biomimetic musculoskeletal progenitor cells from hiPSCs. (C) Tissue-794 

engineering methods allow in vitro fabrication of functional three-dimensional tissues using: 795 

porous scaffolds that initially provide structural and mechanical support to seeded cells and are 796 

subsequently remodeled in vitro and in vivo; Cell sheets that are detached from extracellular matrix 797 

(ECM)- or thermoresponsive polymer-coated dishes and subsequently stacked; Self-assembly of 798 

highly dense cell condensates that initially secrete an immature ECM, followed by cell and matrix 799 
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maturation and acquisition of native-like mechanical properties; and 3D bioprinting of cells and 800 

bioinks to recreate complex tissue architecture and cell composition, which, however, does not 801 

lead to native tissue functionality.  802 

 803 

Fig. 4. Bioengineering approaches for gene-based musculoskeletal therapies. (A) Antisense 804 

oligonucleotides mask exons from splicing machinery and restore functional gene expression. (B) 805 

Gene replacement via use of ubiquitous, tissue-specific, or inflammatory-responsive promoters 806 

controls the expression of full-length or modified versions of the gene of interest. (C) Growth 807 

factor secretion by ex vivo or in vivo transduced cells creates a pro-regenerative microenvironment 808 

at the injury site. (D) CRISPR-Cas9 editing induces double-stranded breaks (DSBs) and gene 809 

knock-out by nonhomologous end joining (NHEJ). Alternatively, homology-directed repair 810 

(HDR) with inclusion of a DNA template allows for gene knock-in. (E) Systemic gene delivery is 811 
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accomplished by AAV vector or non-viral polymeric or lipid nanoparticle (NP) systems. 812 

Alternatively, ex vivo gene modifications are performed by transduction or transfection of 813 

autologous or allogeneic cells prior to transplantation. 814 

  815 
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