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 20 

Abstract 21 

Oxygen isotope analysis of bioapatite in vertebrate remains (bones and teeth) is 22 

commonly used to address questions on palaeoclimate from the Eocene to the recent 23 

past. Researchers currently use a range of methods to calibrate their data, enabling the 24 

isotopic composition of precipitation and the air temperature to be estimated. In some 25 
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situations the regression method used can significantly affect the resulting 26 

palaeoclimatic interpretations. Furthermore, to understand the uncertainties in the 27 

results, it is necessary to quantify the errors involved in calibration. Studies in which 28 

isotopic data are converted rarely address these points, and a better understanding of 29 

the calibration process is needed. This paper compares regression methods employed 30 

in recent publications to calibrate isotopic data for palaeoclimatic interpretation and 31 

determines that least-squares regression inverted to x = (y-b) / a is the most 32 

appropriate method to use for calibrating causal isotopic relationships. We also 33 

identify the main sources of error introduced at each conversion stage, and investigate 34 

ways to minimise this error. We demonstrate that larger sample sizes substantially 35 

reduce the uncertainties inherent within the calibration process: typical uncertainty in 36 

temperature inferred from a single sample is at least ±4ºC, which multiple samples 37 

can reduce to ±1–2ºC. Moreover, the gain even from one to four samples is greater 38 

than the gain from any further increases. We also show that when converting 39 

δ
18

Oprecipitation to temperature, use of annually averaged data can give significantly less 40 

uncertainty in inferred temperatures than use of monthly rainfall data. Equations and 41 

an online spreadsheet for the quantification of errors are provided for general use, and 42 

could be extended to contexts beyond the specific application of this paper.  43 

 Palaeotemperature estimation from isotopic data can be highly informative for 44 

our understanding of past climates and their impact on humans and animals. However, 45 

for such estimates to be useful, there must be confidence in their accuracy, and this 46 

includes an assessment of calibration error. We give a series of recommendations for 47 

assessing uncertainty when making calibrations of δ
18

Obioapatite–δ
18

Oprecipitation–48 

Temperature. Use of these guidelines will provide a more solid foundation for 49 

palaeoclimate inferences made from vertebrate isotopic data. 50 
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1. Introduction 57 

Oxygen isotope analysis of bioapatite in vertebrate remains (bones and teeth) and 58 

shell carbonates in terrestrial and marine invertebrates are commonly used to address 59 

questions on palaeoclimate, palaeoecology and palaeotemperature from the Eocene to 60 

the recent past (e.g. FRICKE et al., 1995; LÉCOLLE, 1985; VAN DAM and REICHART, 61 

2009; ZANAZZI et al., 2007; ZANCHETTA et al., 2005). It is sometimes possible to use 62 

δ
18

Obioapatite values to address the questions of interest directly, without requiring the 63 

data to be converted/calibrated to other forms (e.g. FORBES et al., 2010; HALLIN et al., 64 

2012). In many isotopic studies, however, the data are converted to quantitative 65 

estimates of the oxygen isotopic value of precipitation and thence to temperature 66 

(ARPPE and KARHU, 2010; NAVARRO et al., 2004; SKRZYPEK et al., 2011; TÜTKEN et 67 

al., 2007). These investigations require two data conversions that are based on well 68 

demonstrated correlations: 69 

 70 

Z1 A species-specific conversion, using δ
18

Obioapatite to estimate the mean 71 

isotopic composition of ingested water (δ
18

Odrinking water)( KOHN, 1996; 72 

LONGINELLI, 1984; LUZ et al., 1984; LUZ and KOLODNY, 1985). For the 73 

purposes of palaeoclimatic reconstruction δ
18

Odrinking water is typically 74 

assumed to be equivalent to local mean δ
18

Oprecipitation; 75 
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 76 

Z2 A regionally-specific conversion, using the estimated value of mean 77 

δ
18

Oprecipitation to estimate mean air temperature T (ROZANSKI et al., 1992), 78 

which relates to the period the bioapatite was growing.  79 

 80 

These correlations exist because of physical laws that govern the movement of 81 

isotopes through the biological and hydrological systems, and they remain 82 

consistently statistically significant across geographical regions and species 83 

(DANSGAARD, 1964; LONGINELLI, 1984).  84 

Defining accurate empirical mathematical relationships between these 85 

variables is complicated both by the problems in obtaining reliable primary data and 86 

by the effect of other variables that introduce uncertainties into the relationships 87 

themselves (KOHN and WELKER, 2005). These uncertainties originate from many 88 

parameters, comprising biological (including species effects, population variability, 89 

variability in use of different water sources), environmental (such as latitudinal 90 

effects, rain variability, isotopic variation between potential water sources) and 91 

analytical (preparation techniques and measurement uncertainty) effects.  92 

Published equations between temperature and the oxygen isotopic values of 93 

bioapatite and precipitation (henceforth referred to as δ
18

Obioapatite–δ
18

Oprecipitation–T) 94 

are developed using regression analyses to obtain lines of best fit in the 95 

form y(x) = ax+b  (Table 1). These may be used to calibrate data if the correlation is 96 

strong enough (LUCY et al., 2008). Recent examples from the literature make clear, 97 

however, that different mathematical practices are currently employed for undertaking 98 

the regression, and we will argue that not all methods are equally appropriate.  99 
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The spread of the data about a line of best fit represents the combined effect of 100 

all the sources of uncertainty. We show that when a best-fit correlation is used to 101 

convert new isotopic measurements, this spread makes an important contribution to 102 

the resultant uncertainty, and it must be taken into account, even if the line of best fit 103 

appears well constrained. If all the uncertainties are acknowedged, then the 104 

calibrations can be a useful method for generating first-order estimates of variables of 105 

interest in palaeoclimatic research. We will demonstrate that the uncertainties in the 106 

empirically-derived isotopic relationships, and the natural variability of new samples 107 

about those relationships, lead unavoidably to significant uncertainty in estimates of 108 

δ
18

Oprecipitation and temperature. Moreover, the calibrations require several steps of data 109 

conversion, and the uncertainties need to be combined appropriately. Whilst some 110 

researchers give some information about uncertainties in individual correlations 111 

(BERNARD et al., 2009; GRIMES et al., 2003; POLLARD et al., 2011; PRYOR et al., 2013; 112 

STEVENS et al., 2011; VAN DAM and REICHART, 2009;), others do not explicitly 113 

quantify the statistical uncertainties inherent in their calculations (UKKONEN et al., 114 

2007; IACUMIN et al., 2010).  115 

Here, we explore the application of standard statistical analysis to the issue of 116 

data calibration in the context of generating estimates of past temperature across a 117 

wide span of geological time (ARPPE and KARHU, 2010; DELGADO HUERTAS et al., 118 

1995; FABRE et al., 2011; KOVÁCS et al., 2012; KRZEMIŃSKA et al., 2010; MATSON 119 

and FOX, 2010; SKRZYPEK et al., 2011; TÜTKEN et al., 2007; UKKONEN et al., 2007; 120 

VAN DAM and REICHART, 2009). Our methods are similar to those used in POLLARD et 121 

al. (2011) who outline the errors associated with inferring geographical origin from 122 

individual human bioapatite measurements We first review some of the methods 123 

commonly used for regression analyses that facilitate the conversion of δ
18

Obioapatite–124 
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δ
18

Oprecipitation–T. A regression technique is then established that is statistically valid 125 

and appropriate for the datasets being employed, and the reasons for choosing this 126 

method are explained in detail. A method for calculating the uncertainties involved in 127 

the data calibrations is then presented, introducing the underlying mathematical model 128 

and the formulae which comprise the basis of the calculation. A digital spreadsheet 129 

that researchers may download and use to process their own data is also presented 130 

(Supplementary Data). We then use our model to demonstrate some trends that arise 131 

from error calculations and conclude with a series of recommendations concerning the 132 

handling of errors when making δ
18

Obioapatite–δ
18

Oprecipitation–T conversions. The 133 

primary calibration equations discussed in this paper focus on the conversion 134 

relationships developed for horse (DELGADO HUERTAS et al., 1995) and elephants 135 

(AYLIFFE et al., 1992): although based on small datasets, both are widely applied 136 

(ARPPE and KARHU, 2010; BOS et al., 2001; DELGADO HUERTAS et al., 1995; FABRE et 137 

al., 2011; KOVÁCS et al., 2012; KRZEMIŃSKA et al., 2010; MATSON and FOX, 2010; 138 

SKRZYPEK et al., 2011; TÜTKEN et al., 2007; UKKONEN et al., 2007). We use them as 139 

an example to show that correct mathematical handling of the data facilitates a more 140 

rigorous data-conversion process, and gives a clearer statement of the inherent 141 

uncertainties in the predictions being made from the existing data. 142 

 143 

2. Data conversion on enamel carbonates 144 

By convention, the calibration equations of interest (e.g. for Z1) are typically 145 

expressed in terms of δ
18

Obioapatite values measured on the phosphate moiety in the 146 

bioapatite structure, quoted relative to the SMOW/VSMOW isotopic standards. 147 

Enamel carbonates offer an alternative source for measuring δ
18

Obioapatite, almost 148 

always measured relative to the PDB/VPDB isotopic standards. Using isotopic data 149 
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measured on the carbonate moiety of tooth enamel therefore requires up to two 150 

preliminary conversions (see Table 1): firstly if the δ
18

Obioapatite values were measured 151 

relative to the PDB/VPDB isotopic standards, and/or secondly the estimation of a 152 

phosphate δ
18

O value from an enamel carbonate δ
18

O measurement. While these two 153 

conversions (described as A1 and A2 in Table 1) each have statistical errors 154 

associated with defining the line of best fit through the data points (see below), their 155 

correlation coefficient r
2
 is very close to 1, meaning the associated errors are 156 

minimal. Similarly, measurement errors on oxygen isotopic values are typically 157 

negligible compared to the calibration errors. This paper therefore focuses on the 158 

implications of much greater uncertainties in conversions from δ
18

Obioapatite to 159 

δ
18

Oprecipitation and thence to temperature T (Z1 and Z2 in Table 1). Unless specifically 160 

stated, all δ
18

O values in this paper are given relative to SMOW/VSMOW. 161 

 162 

3. Calculating conversion relationships using least squares regression 163 

From the perspective of palaeoclimatic investigations, the equations used for 164 

conversions Z1 and Z2 are often published in a form that is in the opposite direction 165 

to that required when investigating palaeontological and archaeological material: i.e. 166 

y = ax+b  where x is the unknown variable being reconstructed from observations of 167 

y  (e.g. Table 1). This is because the conversion equations follow the presumed 168 

direction of causality, from input to output – thus, δ
18

Oingested water as the independent 169 

variable on the x-axis controls resultant δ
18

Obioapatite on the y-axis and, similarly, air 170 

temperature T controls resultant δ
18

Oprecipitation. Palaeoclimatologists, however, need to 171 

work backwards from the known output, which is found and measured, to estimate the 172 

input. Researchers have approached this problem in two different ways: some choose 173 

to find the least-squares fit y(x) = ax+b  and then invert it to obtain x = (y-b) / a 174 



8 

(henceforth known as inverted forward regression)( ARPPE and KARHU, 2010; 175 

AYLIFFE et al., 1994; TÜTKEN et al., 2007; UKKONEN et al., 2007); others instead swap 176 

the x and y axes of the original data, transposing and re-plotting it, to find a new least-177 

squares fit of the form x = cy+d  (henceforth referred to as transposed, or reversed, 178 

regression)(BERNARD et al., 2009; FABRE et al., 2011; KOVÁCS et al., 2012; 179 

SKRZYPEK et al., 2011; VAN DAM and REICHART, 2009;). 180 

It is important to note that, unless the data are perfectly correlated (with r
2
 = 181 

1), the equations x = (y-b) / a and x = cy+d  obtained in this way from the same 182 

dataset will differ in a predictable manner and thus generate predictably different 183 

values for ‘x’. Both equations pass through the mean (x, y) of the data, but the slopes 184 

1/ a  and c are related by 185 

 186 

   c = r2 / a     Equation 1 187 

 188 

so that the worse the data are correlated (the further r
2
 is from 1), the larger the 189 

difference between the slope of the inverted forward and the transposed equations. 190 

From this relationship it follows that values of ‘x’ calculated using a transposed 191 

regression fit of x(y) will be consistently higher than those produced from the inverted 192 

forward regression fit of y(x) for the range of values below the mean (x, y) , and 193 

consistently lower for those above (x, y) (e.g. Figure 1A).  194 

This discrepancy is a serious problem when attempting quantitative 195 

palaeoclimatic reconstruction from isotopic data. For example, across the range of 196 

δ
18

Obioapatite values typically measured from palaeontological and archaeological 197 

samples (c.5–25‰ relative to VSMOW), differences in predicted δ
18

Oingested water from 198 

the forward and transposed fits, y(x) and x(y), vary by several permil, owing to the 199 
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difference in fitted slopes for typical r
2 
= 0.75–0.85 (see Table 1). Similarly for 200 

temperature, where the values of r
2
 are 0.6 or smaller (Table 1) and thus the difference 201 

in slopes is much larger, temperatures calculated from δ
18

Oprecipitation using a forward 202 

fit y(x) will always be significantly warmer than those calculated using a transposed 203 

fit x(y) for values below the mean, and the converse is true when above the mean 204 

(Figure 1A).  205 

One recent example of the impact this difference in method can have on 206 

interpretations of isotopic data is a re-analysis of horse tooth enamel phosphate data 207 

from last interglacial-glacial cycle contexts at the Hallera Avenue site, Wrocław 208 

(Poland) (3 measurements ranging between 13.4‰ and 14.1‰; SKRZYPEK et al., 209 

2011, Supplementary Data). The isotopic data were interpreted as indicating 210 

temperatures 2–4ºC higher than previous estimates for the site based on pollen 211 

analyses (SKRZYPEK et al., 2011). In this analysis, the δ
18

Obioapatite–δ
18

Oprecipitation–T 212 

calibrations were made using transposed fits of a calibration derived from a dataset 213 

from SÁNCHEZ CHILLÓN ET AL. (1994). We recalculated these figures using 214 

forward and transposed fits of a more commonly-used equation for calibrating horse 215 

δ
18

O (DELGADO HUERTAS ET AL. 1995; Table 2, Figure 2). When an inverted 216 

forward regression fit is used to calibrate the δ
18

Obioapatite data, the resulting 217 

δ
18

Oprecipitation estimates are 1–2‰ lower, and the estimated temperatures are 5–7ºC 218 

lower, than when a transposed regression is used. The point here is not to challenge 219 

the specific interpretations given by SKRZYPEK et al. (2011), but to provide a clear 220 

illustration of the significant effects that transposing the calibration equations can 221 

have on the resulting predicted δ
18

Oprecipitation–T values. 222 

Some studies have attempted to avoid the problem of asymmetry between 223 

inverting the forward least-squares regression y(x) and the transposed regression 224 
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x(y) by instead calculating δ
18

Obioapatite–δ
18

Oprecipitation–T conversion relationships 225 

using Reduced Major Axis (RMA) regression (VAN DAM and REICHART, 2009; 226 

MATSON and FOX, 2010). RMA yields an equation with a slope that can also be 227 

related to the correlation coefficient; the RMA slope is r / a = c / r , which is equal to 228 

the geometric mean of the two slopes given by forward and transposed least-squares 229 

regressions, and thus predicts values that fall between these solutions (Figure 1A). 230 

The two least-squares regressions and the RMA regression based on the same data all 231 

intersect at the mean (x, y). Yet they will systematically diverge from each other, 232 

both as the correlation coefficient r
2
becomes smaller, and with increasing distance 233 

from the mean. Given these facts, it is pertinent to ask whether one method is more 234 

appropriate than another for the interpretation of palaeoclimatic δ
18

Obioapatite data? 235 

Two main factors are relevant for discussing this question: the partitioning of error 236 

between x and y, and the direction of causality between the variables. 237 

 238 

3.1 Error partitioning 239 

In a least squares regression analysis, the effects of any (measurement) uncertainties 240 

in the independent controlling variable x are assumed to be negligible in comparison 241 

to the statistical variability in the dependent variable y for a given value of x. The 242 

underlying statistical model is y =ax+b +e , where the coefficients α and β give the 243 

true correlation line for the whole population from which the data sample is drawn 244 

(whereas a and b are estimates of α and β from the data), and where e  is a random 245 

variable with a zero mean that reflects natural variability about any less-than-perfect 246 

correlation, perhaps due to unknown variables other than x that also affect y. The 247 

forward least-squares fit y(x) is calculated by minimising the sum of the squared y-248 

distances between each datapoint and the best fit line (Figure 1B). This assumes that 249 
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100% of the residual misfit is associated with the variability or uncertainty in y, 250 

including when the formula is used in its inverted form x = (y-b) / a. Conversely, the 251 

transposed fit x(y) minimizes the sum of the squared x-distances between the 252 

datapoint and the line, assuming that 100% of the residual misfit is associated with 253 

uncertainty in x (Figure 1C). 254 

It is obvious in practice that the datasets used to generate equations for 255 

palaeoclimatic reconstruction have measurement errors in both x and y, which should 256 

be considered additional to the errors associated with natural variability in the 257 

dependent variable y. For example, in conversion Z1, δ
18

Odrinking water is typically 258 

poorly known, being estimated using δ
18

Oprecipitation data from local or regional 259 

International Atomic Energy Agency monitoring stations that may not include (or be 260 

restricted to) data from the years when the analysed fauna were alive, rather than 261 

being estimated from water sources actually consumed by fauna (AYLIFFE et al., 1992; 262 

HOPPE, 2006; SÁNCHEZ CHILLÓN et al., 1994); δ
18

Obioapatite can generally be measured 263 

more precisely, yet sources of sampling variability may include such factors as the 264 

time period represented by the analysed sample. If the sizes of the errors were known 265 

– typically they are not – then a generalised least-squares method could be used to 266 

assign a specified proportion of the misfit to each variable, and the resultant slope 267 

would fall between those of the inverted forward fit and the transposed fit. RMA 268 

constitutes a specific example of this, making the overly simplistic assumption that 269 

the errors in x and y are proportional to the magnitude of the overall range in each 270 

variable (SMITH, 2009), which is equivalent to minimising the sum of the triangular 271 

areas formed between each datapoint and the line of best fit in both the x and y 272 

directions (Figure 1D). The best argument for this assumption is that x and y are 273 

treated symmetrically in the minimisation, and thus calibrations produced using RMA 274 
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do not depend on whether the data is transposed or not. It is not an appropriate 275 

assumption, however, when most of the misfit is probably due to natural variability in 276 

y. 277 

 278 

3.2 Direction of causality 279 

The symmetry of RMA analysis between x and y, and the acknowledgement of error 280 

in both axes, suggests that it may be appropriate in situations where the two variables 281 

are co-dependent on other causes, and it seems arbitrary which variable is placed on 282 

which axis. For example, in conversion between δ
18

Ophosphate and δ
18

Ocarbonate (A2), the 283 

two variables are directly related but one is not dependent on the other; rather, they 284 

co-vary according to the composition of a third variable – the δ
18

O of body water. 285 

Accordingly, we suggest that RMA be considered for conversions A1 and A2 286 

(although both datasets show such high r
2
 coefficients that the difference between the 287 

least squares and RMA solutions would be small). 288 

In contrast, we argue here that RMA is not the appropriate method for 289 

conversions Z1 and Z2 due to the causal relationship between the two variables in 290 

each conversion, which are related because one is dependent on the other, i.e. there is 291 

a causal stimulus and resulting effect. For example, the value of y=δ
18

Obioapatite is a 292 

dependent variable, controlled by the independent variable x=δ
18

Odrinking water (with 293 

some natural variability due to other factors such as physiology and food) and no 294 

possibility for δ
18

Obioapatite to impact back directly on δ
18

Odrinking water. The critical point 295 

here is the asymmetry of the relationship being investigated. In situations where x 296 

“causes” y, it is statistical good practice and appropriately representative of the 297 

physical relationship between the variables to place the independent variable on the x-298 

axis and calculate a fit of y(x), thus preserving the direction of cause and effect (see 299 
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also POLLARD et al., 2011 and SMITH, 2009). For δ
18

Obioapatite–δ
18

Oprecipitation–T 300 

conversions, the most appropriate method is thus a forward least squares analysis, 301 

following the direction of causality and then inverting the relationship to 302 

abyx /)(  ; this is indeed consistent with the way in which the vast majority of 303 

conversion relationships have been published. We discourage the use of transposed 304 

regression and RMA for these conversions, as statistically inappropriate for the causal 305 

relationships used in the Z1 and Z2 calibrations, and we note again that they are 306 

possibly misleading since they have lower slopes, r2 / a  and r / a  respectively, than 307 

the slope 1/ a  of inverted forward regression (see earlier discussion of slopes). 308 

 309 

3.3 Theory of error and error estimation 310 

Palaeoclimatic researchers have an understandable desire to draw firm conclusions 311 

about past temperatures from the isotopic measurements of palaeontological and 312 

archaeological samples. It is important, nevertheless, to keep track of the statistical 313 

uncertainties that are inevitably associated with reconstructions based on least-squares 314 

regressions, and these are not always quoted. In this section we discuss the nature of 315 

the statistical uncertainties, explain how they can be calculated and conclude with two 316 

key equations 5 and 6 that may be used for error estimation in the conversions Z1 and 317 

Z2. In the next section we then illustrate the use of these equations by way of case 318 

studies. 319 

The uncertainties in conversions may be divided into two main categories: (1) 320 

those concerning the initial calibration by estimation of the line of best fit for the 321 

population from a finite dataset and (2) those concerning the natural variation of new 322 

samples around the line. Both are ultimately due to the fact that there is a natural 323 

spread of data around any correlation that cannot therefore be described as providing a 324 
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direct prediction of y from x. This is often due to the impact of other external factors, 325 

for example, the impact of humidity, evapotranspiration effects or intra-population 326 

variability on the δ
18

Obioapatite–δ
18

Oprecipitation conversion (see also the discussion of 327 

natural variation in SMITH, 2009). As the variables δ
18

Obioapatite and δ
18

Oprecipitation are 328 

not 100% dependent upon each other, deviations from a line of best fit are inevitable 329 

even if the measurement errors are negligible. This variation cannot be controlled or 330 

reduced by the investigator, but is a natural property of the system being investigated, 331 

and it should be estimated when using the conversion formula to calibrate isotopic 332 

data.  333 

Recall that the underlying statistical model is y =ax+b +e , where α and β 334 

give the true correlation line for the whole population, and ε is a random variable that 335 

represents the effects of all the unknown variables that impact on the calibration 336 

relationship. (The parameters α and β are unknown because we can only ever have a 337 

sample from the whole population.) When α and β are estimated by a least-squares fit 338 

( baxy  ) to a dataset containing a random sample of n values (xi, yi) from this 339 

population, the inherent uncertainty, if reported, is often given in the 340 

form y = (a±da)x+ (b±db). It is, however, statistically more appropriate to write 341 

y=ax+b ± δy, where the formula 342 

 343 

 344 

Equation 2 345 

 346 

gives a one-standard-deviation estimate of the uncertainty in the least-squares fit at 347 

position x, and 348 
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 349 

and 350 

 351 

Equation 3 352 

 353 

Here, δa is an estimate of the uncertainty in the slope, db  is an estimate of the 354 

uncertainty in the fit at x = x , and sy/x  is an estimate of the standard deviation of the 355 

natural variability in ε. Three critical points to note are: (i) the uncertainty in the fit is 356 

proportional to the natural variation sy/x  about the fit; (ii) the uncertainty decreases as 357 

the size n of the dataset increases; (iii) the uncertainty increases with distance x- x  358 

from the mean of the dataset, which is a warning against extrapolation. We note also 359 

that regression software typically returns the value db =db+ da x  of the uncertainty 360 

in the fit at x = 0 rather than db , and thus δb may substantially overestimate the 361 

uncertainties of calibrated δ
18

O or temperature values if, as is usual, these are not 362 

centred around x = 0 (which is sometimes known as the lever effect). 363 

We now apply this model to assess the magnitude of the errors in categories 364 

(1) and (2) when evaluating data using an inverted calibration equation x = (y-b) / a. 365 

First, we note that the least-squares fit is itself uncertain. Following MILLER and 366 

MILLER (1984), we can approximate the uncertainty in the inverted correlation line by 367 

writing x = (y-b) / a+dx , where: 368 
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 369 

 370 

Equation 4 371 

 372 

(Equation 4 can be derived from Equations 2 and 3 and the relationship 373 

(y- y) = a(x- x) which follows from b = y-ax .) 374 

Second, we note that when using sample data for palaeoclimatic 375 

reconstruction, each of these samples is subject to the natural variability ε. Therefore 376 

the mean y0 of the samples is not equivalent to the population mean y at a given 377 

location, just as a particular mammoth tooth is unlikely to be typical of the population 378 

as a whole. If we have m independent samples (where m may only be 1) and the mean 379 

of those samples y0 then the value of x0 = (y0 -b) / a inferred from the calibration 380 

relationship is subject to an uncertainty (MILLER and MILLER, 1984; POLLARD et al., 381 

2011): 382 

 383 

Equation 5 384 

 385 

In many practical examples, the number n of datapoints used to generate the 386 

correlation is much greater than the number m of independent samples, and thus the 387 

natural variability of these samples will then dominate any uncertainty from the 388 

correlation.  389 
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Finally, there are many situations where researchers may wish to take 390 

estimates x0 of δ
18

Oprecipitation generated by conversion Z1, and use a further calibration 391 

T = (x-bT ) / aT  to generate an estimate of temperature from the value of x0 392 

(conversion Z2). The uncertainty in this temperature can be obtained using a similar 393 

formula to Equation 5, but this time using the uncertainty δx0 previously calculated for 394 

the δ
18

Obioapatite–δ
18

Oprecipitation calibration in place of a sample variability sx/T / m . 395 

This gives: 396 

 397 

Equation 6 398 

 399 

where nT and xT  are values from the temperature calibration dataset. It is important to 400 

note that Equation 6 is used to estimate errors at the Z2 conversion stage only when 401 

using values of x0
 inferred from conversion Z1 with uncertainty dx0

 inferred from 402 

Equation 5. (If a Z2 conversion were applied to mT  direct observations of x0
 403 

(δ
18

Oprecipitation) then an equation analagous to Equation 5 would be used instead.) 404 

Equations 4–6 are all simple estimates of one-standard-deviation uncertainty 405 

for the relevant variable. This is certainly sufficient to get a feel for the magnitude of 406 

the uncertainties, though rigorous hypothesis testing should be based on confidence 407 

intervals in a Student's t-test (POLLARD et al., 2011). For ease of use, these equations 408 

have been programmed into a spreadsheet that is available with this article, 409 

downloadable from the journal website (Supplementary Data). 410 

 411 



18 

4. Application and propagation of errors 412 

Having outlined the theory of error and error estimation, we now assess some of the 413 

implications for the way that palaeoclimatic inferences are drawn from isotopic data, 414 

and provide examples of the conversion δ
18

Obioapatite–δ
18

Oprecipitation–T using published 415 

data. A key point is that this is a two-stage process, and that errors produced in the 416 

first stage must be propagated through to the second stage. Our approach has been 417 

developed for a particular context, that of vertebrate isotopic data, but may be used in 418 

other geochemical contexts. 419 

 420 

4.1 Errors in the conversion from δ
18

Obioapatite to δ
18

Oprecipitation (Z1) 421 

To illustrate the errors associated with this conversion, we have re-analysed two 422 

datasets from previous studies (horse and mammoth δ
18

Obioapatite)(AYLIFFE et al., 1992; 423 

DELGADO HUERTAS et al., 1995) using Equations 4 and 5 to obtain the error estimates 424 

for an inverted forward regression (Figure 2). The error lines show how uncertainty in 425 

the lines of best fit is least around the dataset mean (x, y)  and increases with distance 426 

from the mean, for both the uncertainty in the fit, calculated using Equation 4 (dark 427 

grey region in Figure 2) and the total uncertainty dx0
 incorporating the natural 428 

variability of the population, calculated using Equation 5 (light grey region in Figure 429 

2). The total error associated with converting a single δ
18

Obioapatite measurement (i.e. m 430 

= 1) to δ
18

Oprecipitation using x = (y-b) / a remains relatively constant for different 431 

values of y, since it is dominated by the estimate of the natural variability in the 432 

sample data (the first term in the square root of Equation 5). 433 

Considering Equation 5, it is clear that the errors associated with calibration 434 

will be smaller if a larger number of samples are averaged together, thus reducing the 435 

size of the term 1/m. The effects of sample size may be illustrated by calculating the 436 
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errors associated with converting δ
18

Obioapatite values in the range 10‰–20‰ to 437 

estimates of δ
18

Oprecipitation. Comparing conversions from increasing sample sizes of 1, 438 

5 and 20 individuals with a mean δ
18

Obioapatite value of 10‰, we see that the errors are 439 

reduced from 1.7‰ to 1.1‰ in mammoth and 2.8‰ to 1.6‰ in horses; larger 440 

reductions are seen for mean δ
18

Obioapatite values of 20‰ since these are closer to the 441 

regression mean (Table 3). Whilst increasing sample sizes does reduce the error, a 442 

larger reduction is always seen between sample sizes of 1 and 5 than between 5 and 443 

20 (indeed, the largest drop is from m = 1 to m = 2). That the greatest reduction in 444 

error is seen when analysing two samples rather than just one emphasises that it is 445 

worth making a significant effort to get more than one sample from each layer; 446 

however, after a few samples, the extra effort of continuing to reduce 1/m has little 447 

extra impact, as the error tends towards that of the regression line. These calculations 448 

clearly indicate the benefit of sampling multiple individuals to obtain a better estimate 449 

of the population-level mean δ
18

Obioapatite, which can more than halve the error 450 

compared to single measurements in some cases. 451 

The effects of sample size can be further illustrated with an example of 452 

recently published data. In their investigation of early-mid Pleniglacial climate in 453 

Poland, SKRZYPEK et al. (2011) calibrate their oxygen isotopic data from bioapatite to 454 

temperature using transposed fits of x(y) but do not report the associated errors. When 455 

their data for mammoth and horse samples are reprocessed using the methods outlined 456 

in this paper (using the equations of AYLIFFE et al.1992 and DELGADO HUERTAS et al. 457 

1995), the errors in T are calculated to be ±4.3–4.6ºC and ±8.0ºC respectively. 458 

Treating each sample individually, these errors are too large to offer a detailed 459 

interpretation of palaeoclimate. However, by using the mean of two mammoth 460 

samples and the two horse samples from the same layer, the errors fall to ±3.3ºC and 461 
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±5.9ºC respectively. If ten individuals had been sampled for each layer these errors 462 

could have been reduced to <2ºC. 463 

A previous assessment of calibration errors investigated the conversion of 464 

human δ
18

Obioapatite–δ
18

Oprecipitation, and calculated errors of at least 1–3.5‰ (POLLARD 465 

et al., 2011). This study concluded that these errors were too large for the calculated 466 

δ
18

Oprecipitation values to be used for pin-pointing the geographic origin of individuals 467 

within the UK due to the limited natural variability in UK groundwaters. This is an 468 

interpretive problem in which it is desired to interpret each sample individually, and 469 

thus averaging between individuals cannot be used to reduce the uncertainty. In 470 

situations where multiple individuals can be sampled, however, such as the 471 

investigation of palaeotemperature through faunal remains as discussed in this article, 472 

it is possible to reduce the uncertainty by increasing m and obtain a more accurate 473 

estimate of the mean value of y (i.e. of y0
 in equations 4, 5 and 6). This substantially 474 

reduces the conversion errors overall. The sensitivity of the calibration equations to 475 

the number of measured samples has critical importance for determining whether the 476 

research questions of interest can legitimately be answered when calibrating the data, 477 

or whether the associated errors will be too large. Calibration may not be sufficient to 478 

answer the question, particularly for individual samples or smaller assemblages where 479 

a cohesive group of samples cannot be obtained.  480 

 481 

4.2 Propagation of errors into the conversion from δ
18

Oprecipitation to temperature (Z2) 482 

Moving to the second stage of the conversion process, we now consider what are the 483 

implications of the quantified errors in the Z1 conversion when propagated through 484 

into the Z2 conversion of δ
18

Oprecipitation to temperature. Unlike for conversion Z1, 485 

there are no standard equations for this stage, but rather there are many equations that 486 
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have been used, which follow from a particular choice of dataset to construct each 487 

equation. Researchers typically generate a δ
18

Oprecipitation–T conversion dataset relevant 488 

to their study by compiling the readily available data from one or a number of 489 

monitoring stations in the GNIP network over a global, continental, or regional 490 

geographic area (KOVÁCS et al., 2012; SKRZYPEK et al., 2011); other potential 491 

calibration equations have also been calculated (DULIŃSKI et al., 2001; GOURCY et al., 492 

2005; ROZANSKI et al., 1993; TÜTKEN et al., 2007; UKKONEN et al., 2007; VON 493 

GRAFENSTEIN et al., 1996). Each of these datasets will generate a slightly different 494 

estimated temperature for a given value of δ
18

Oprecipitation. For example, Table 4 shows 495 

the temperatures and errors estimated from horse δ
18

Obioapatite using five different 496 

datasets taken from the GNIP network for the Z2 conversion (see also Table 1). We 497 

illustrate the effect of varying numbers of enamel analyses (1, 5, 10, 20), but all with a 498 

mean δ
18

Obioapatite of 15‰, equating to δ
18

Oprecipitation of –10.7‰.  499 

Three significant points are highlighted. Firstly, the crucial effect of palaeo-500 

sample size m is again evident: the dominant influence on the errors at the Z2 501 

conversion stage is the number of horse samples analysed (m) and the consequent 502 

magnitude of the error in the Z1 conversion (δx0). The term dx
0

2
 dominates the other 503 

terms in the square root in Equation 6 so that, to a good approximation, 504 

dT0 » dx0 / aT , and the statistical uncertainty in the regression line for a particular 505 

dataset has little effect (see Figure 3). But as we discuss below, it does not follow that 506 

the choice of dataset has little effect. 507 

Secondly, the choice of dataset and thus regression equation can make a big 508 

difference to the estimated magnitude of error for a given number of samples. In the 509 

example we show, conversions based on annual temperature/precipitation data give 510 

markedly smaller errors than the equations based on monthly data (compare the 511 
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conversions based on data from Kraków and Vienna: Table 4). This is because the 512 

spread of the annual and monthly data are different, influencing the slope aT of the 513 

δ
18

Oprecipitation–T regression line: for the annually averaged data, the slope is 514 

approximately twice as large as that for the monthly data and, as noted above, 515 

dT0 » dx0 / aT . The choice between monthly and annual data should, however, be 516 

made on grounds of biological suitability, such as the nature of the temporal 517 

averaging in the faunal sample, rather than simply to minimise error estimates.  518 

Thirdly, though the statistical uncertainty in the regression line for a given 519 

dataset is typically less than 0.2ºC (Table 1), the temperatures inferred from the 520 

different datasets vary from 5.8ºC (General Europe) to 8.7ºC (Vienna, annual). 521 

However, if the number of faunal samples is small then, allowing for the uncertainty 522 

in the Z1 conversions, the temperature ranges predicted by the various equations 523 

largely overlap with each other (Figure 4). Only if 10 or 20 samples are available do 524 

the temperature ranges inferred from annual data at different locations start to 525 

separate.  526 

The above discussion suggests that whilst the errors are mainly generated by 527 

the Z1 conversion (δ
18

Obioapatite–δ
18

Oprecipitation) and depend on sample size, the way 528 

that these errors are mapped through to temperature ranges depends on the choice of 529 

regression line for the Z2 conversion (δ
18

Oprecipitation–T). 530 

 531 

5. Concluding comments and recommendations 532 

The correlations between temperature and the oxygen isotopic values of bioapatite 533 

and precipitation motivate the use of calibration for generating first-order estimates of 534 

palaeoclimatic variables indicated by faunal isotopic compositions. Calibration also 535 

permits direct comparisons between measurements based on δ
18

Obioapatite data and 536 
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estimates of δ
18

Ogroundwater or temperature measured in other proxies such as 537 

palaeoaquifer waters, chironomids or pollen. Such multi-proxy comparative 538 

approaches represent a valuable interpretive tool in palaeoclimatic studies provided 539 

the limits and uncertainties of each method are acknowledged, which is not 540 

universally done. We offer the equations in this paper as a suitable means of 541 

quantifying the uncertainties associated with calibrating isotopic data. 542 

In summary, we advocate the use of multiple samples where possible, but that a 543 

balance must be struck between reduced uncertainty and feasibility, both in terms of 544 

number of analyses and comparative data. The use of multiple samples (m>1) for each 545 

investigated assemblage reduces the population-level uncertainty through the factor 546 

1/m in Equation 5. But after a certain point, when 1/m becomes smaller than other 547 

terms inside the square root of Equation 5, adding more samples will not significantly 548 

reduce the Z1 conversion error (δ
18

Obioapatite–δ
18

Oprecipitation) any further. For 549 

conversions of δ
18

Obioapatite data to temperature through both the Z1 and Z2 550 

conversions (δ
18

Obioapatite–δ
18

Oprecipitation–Temperature), the use of larger numbers of 551 

samples results in smaller errors at both conversion stages. But the limiting factor on 552 

temperature estimates may often be the availability of appropriate comparative 553 

datasets. In such circumstances, one should be aware of the accuracy needed to make 554 

meaningful interpretations in a given case study. 555 

 556 

We conclude by listing three recommendations for the statistical treatment of 557 

errors in the conversion of bioapatite oxygen isotope data to precipitation oxygen 558 

isotope values and temperature: 559 

 560 
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1. Use appropriate regression for the datasets being employed – we recommend 561 

inverted forward regression for conversions Z1 and Z2, and not transposed or 562 

RMA regressions. 563 

2. To report errors in a regression line, use Equations 2 and 3 rather than the 564 

form y = (a±da)x+ (b±db), as is commonly produced by spreadsheet 565 

software. 566 

3. To report errors in data conversion, use Equations 5 and 6 which appropriately 567 

estimate this uncertainty. 568 

 569 

These recommendations are not a comprehensive list, but offer an important set of 570 

guidelines regarding the calculation of error estimates. 571 
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