7 research outputs found

    Research Reports Validation

    No full text
    of rat reference genes for improved quantitative gene expression analysis using low density array

    Comparing molecular and computational approaches for detecting viral integration of AAV gene therapy constructs

    No full text
    Many current gene therapy targets use recombinant adeno-associated virus (AAV). The majority of delivered AAV therapeutics persist as episomes, separate from host DNA, yet some viral DNA can integrate into host DNA in different proportions and at genomic locations. The potential for viral integration leading to oncogenic transformation has led regulatory agencies to require investigation into AAV integration events following gene therapy in preclinical species. In the present study, tissues were collected from cynomolgus monkeys and mice 6 and 8 weeks, respectively, following administration of an AAV vector delivering transgene cargo. We compared three different next-generation sequencing approaches (shearing extension primer tag selection ligation-mediated PCR, targeted enrichment sequencing [TES], and whole-genome sequencing) to contrast the specificity, scope, and frequency of integration detected by each method. All three methods detected dose-dependent insertions with a limited number of hotspots and expanded clones. While the functional outcome was similar for all three methods, TES was the most cost-effective and comprehensive method of detecting viral integration. Our findings aim to inform the direction of molecular efforts to ensure a thorough hazard assessment of AAV viral integration in our preclinical gene therapy studies

    A spatiotemporal DNA endoploidy map of the Arabidopsis root reveals roles for the endocycle in root development and stress adaptation

    Get PDF
    Somatic polyploidy caused by endoreplication is observed in arthropods, molluscs, and vertebrates but is especially prominent in higher plants, where it has been postulated to be essential for cell growth and fate maintenance. However, a comprehensive understanding of the physiological significance of plant endopolyploidy has remained elusive. Here, we modeled and experimentally verified a high-resolution DNA endoploidy map of the developing Arabidopsis thaliana root, revealing a remarkable spatiotemporal control of DNA endoploidy levels across tissues. Fitting of a simplified model to publicly available data sets profiling root gene expression under various environmental stress conditions suggested that this root endoploidy patterning may be stress-responsive. Furthermore, cellular and transcriptomic analyses revealed that inhibition of endoreplication onset alters the nuclear-to-cellular volume ratio and the expression of cell wall-modifying genes, in correlation with the appearance of cell structural changes. Our data indicate that endopolyploidy might serve to coordinate cell expansion with structural stability and that spatiotemporal endoreplication pattern changes may buffer for stress conditions, which may explain the widespread occurrence of the endocycle in plant species growing in extreme or variable environments
    corecore