64 research outputs found

    Important role of endogenous norepinephrine and epinephrine in the development of in vivo pressure-overload cardiac hypertrophy

    Get PDF
    OBJECTIVES: We sought to define the role of norepinephrine and epinephrine in the development of cardiac hypertrophy and to determine whether the absence of circulating catecholamines alters the activation of downstream myocardial signaling pathways. BACKGROUND: Cardiac hypertrophy is associated with elevated plasma catecholamine levels and an increase in cardiac morbidity and mortality. Although considerable evidence suggests that G-protein-coupled receptors are involved in the hypertrophic response, it remains controversial whether catecholamines are required for the development of in vivo cardiac hypertrophy. METHODS: We performed transverse aortic constriction (TAC) in dopamine beta-hydroxylase knockout mice (Dbh(-/-), genetically altered mice that are completely devoid of endogenous norepinephrine and epinephrine) and littermate control mice. After induction of cardiac hypertrophy, the mitogen-activated protein kinase (MAPK) signaling pathways were measured in pressure-overloaded/wild-type and Dbh(-/-) hearts. RESULTS: Compared with the control animals, cardiac hypertrophy was significantly blunted in Dbh(-/-) mice, which was not associated with altered cardiac function, as assessed by transthoracic echocardiography in conscious mice. The extracellularly regulated kinase (ERK 1/2), c-jun-NH(2)-terminal kinase (JNK) and p38 MAPK pathways were all activated by two- to threefold after TAC in the control animals. In contrast, induction of the three pathways (ERK 1/2, JNK and p38) was completely abolished in Dbh(-/-) mice. CONCLUSIONS: These data demonstrate a nearly complete requirement of endogenous norepinephrine and epinephrine for the induction of in vivo pressure-overload cardiac hypertrophy and for the activation of hypertrophic signaling pathways

    Agrarstruktur in Ghandruk und Umgebung : Schwerpunkt Ackerbau und Hausgärten

    Get PDF
    Immunity to human influenza A virus (IAV) infection is only partially understood. Broadly non-neutralizing antibodies may assist in reducing disease but have not been well characterized.We measured internalization of opsonized, influenza protein-coated fluorescent beads and live IAV into a monocytic cell line to study antibody-dependent phagocytosis (ADP) against multiple influenza hemagglutinin (HA) subtypes. We analyzed influenza HA-specific ADP in healthy human donors, in preparations of intravenous immunoglobulin (IVIG), and following IAV infection of humans and macaques.We found that both sera from healthy adults and IVIG preparations had broad ADP to multiple seasonal HA proteins and weak cross-reactive ADP to non-circulating HA proteins. The ADP in experimentally influenza-infected macaque plasma and naturally influenza-infected human sera mediated phagocytosis of both homologous and heterologous IAVs. Further, the IAV phagocytosed in an antibody-mediated manner had reduced infectivity in vitro.We conclude that IAV infections in humans and macaques leads to the development of influenza-specific ADP that can clear IAV infection in vitro. Repeated exposure of humans to multiple IAV infections likely leads to the development of ADP that is cross-reactive to strains not previously encountered. Further analyses of the protective capacity of broadly reactive influenza-specific ADP is warranted

    Infection of mouse macrophages by seasonal influenza viruses can be restricted at the level of virus entry and at a late stage in the virus life cycle

    Get PDF
    Airway epithelial cells are susceptible to infection with seasonal influenza A viruses (IAV), resulting in productive virus replication and release. Macrophages (MΦ) are also permissive to IAV infection; however, virus replication is abortive. Currently, it is unclear how productive infection of MΦ is impaired or the extent to which seasonal IAV replicate in MΦ. Herein, we compared mouse MΦ and epithelial cells for their ability to support genomic replication and transcription, synthesis of viral proteins, assembly of virions, and release of infectious progeny following exposure to genetically defined IAV. We confirm that seasonal IAV differ in their ability to utilize cell surface receptors for infectious entry and that this represents one level of virus restriction. Following virus entry, we demonstrate synthesis of all eight segments of genomic viral RNA (vRNA) and mRNA, as well as seven distinct IAV proteins, in IAV-infected mouse MΦ. Although newly synthesized hemagglutinin (HA) and neuraminidase (NA) glycoproteins are incorporated into the plasma membrane and expressed at the cell surface, electron microscopy confirmed that virus assembly was defective in IAV-infected MΦ, defining a second level of restriction late in the virus life cycle

    Multiple Insulin Degrading Enzyme Variants Alter In Vitro Reporter Gene Expression

    Get PDF
    The insulin degrading enzyme (IDE) variant, v311 (rs6583817), is associated with increased post-mortem cerebellar IDE mRNA, decreased plasma β-amyloid (Aβ), decreased risk for Alzheimer's disease (AD) and increased reporter gene expression, suggesting that it is a functional variant driving increased IDE expression. To identify other functional IDE variants, we have tested v685, rs11187061 (associated with decreased cerebellar IDE mRNA) and variants on H6, the haplotype tagged by v311 (v10; rs4646958, v315; rs7895832, v687; rs17107734 and v154; rs4646957), for altered in vitro reporter gene expression. The reporter gene expression levels associated with the second most common haplotype (H2) successfully replicated the post-mortem findings in hepatocytoma (0.89 fold-change, p = 0.04) but not neuroblastoma cells. Successful in vitro replication was achieved for H6 in neuroblastoma cells when the sequence was cloned 5′ to the promoter (1.18 fold-change, p = 0.006) and 3′ to the reporter gene (1.29 fold change, p = 0.003), an effect contributed to by four variants (v10, v315, v154 and v311). Since IDE mediates Aβ degradation, variants that regulate IDE expression could represent good therapeutic targets for AD

    Efficacy of a trivalent influenza vaccine against seasonal strains and against 2009 pandemic H1N1: a randomized, placebo-controlled trial

    Get PDF
    Background: Before pandemic H1N1 vaccines were available, the potential benefit of existing seasonal trivalent inactivated influenza vaccines (IIV3s) against influenza due to the 2009 pandemic H1N1 influenza strain was investigated, with conflicting results. This study assessed the efficacy of seasonal IIV3s against influenza due to 2008 and 2009 seasonal influenza strains and against the 2009 pandemic H1N1 strain. Methods: This observer-blind, randomized, placebo-controlled study enrolled adults aged 18–64 years during 2008 and 2009 in Australia and New Zealand. Participants were randomized 2:1 to receive IIV3 or placebo. The primary objective was to demonstrate the efficacy of IIV3 against laboratory-confirmed influenza. Participants reporting an influenza-like illness during the period from 14 days after vaccination until 30 November of each study year were tested for influenza by real-time reverse transcription polymerase chain reaction. Results: Over a study period of 2 years, 15,044 participants were enrolled (mean age ± standard deviation: 35.5 ± 14.7 years; 54.4% female). Vaccine efficacy of the 2008 and 2009 IIV3s against influenza due to any strain was 42% (95% confidence interval [CI]: 30%, 52%), whereas vaccine efficacy against influenza due to the vaccine-matched strains was 60% (95% CI: 44%, 72%). Vaccine efficacy of the 2009 IIV3 against influenza due to the 2009 pandemic H1N1 strain was 38% (95% CI: 19%, 53%). No vaccine-related deaths or serious adverse events were reported. Solicited local and systemic adverse events were more frequent in IIV3 recipients than placebo recipients (local: IIV3 74.6% vs placebo 20.4%, p < 0.001; systemic: IIV3 46.6% vs placebo 39.1%, p < 0.001). Conclusions: The 2008 and 2009 IIV3s were efficacious against influenza due to seasonal influenza strains and the 2009 IIV3 demonstrated moderate efficacy against influenza due to the 2009 pandemic H1N1 strain

    Health services use among children diagnosed with medium-chain acyl-CoA dehydrogenase deficiency through newborn screening: A cohort study in Ontario, Canada

    Get PDF
    Background: We describe early health services utilization for children diagnosed with medium-chain acyl-CoA dehydrogenase (MCAD) deficiency through newborn screening in Ontario, Canada, relative to a screen negative comparison cohort. Methods: Eligible children were identified via newborn screening between April 1, 2006 and March 31, 2010. Age-stratified rates of physician encounters, emergency department (ED) visits and inpatient hospitalizations to March 31, 2012 were compared using incidence rate ratios (IRR) and incidence rate differences (IRD). We used negative binomial regression to adjust IRRs for sex, gestational age, birth weight, socioeconomic status and rural/urban residence. Results: Throughout the first few years of life, children with MCAD deficiency (n = 40) experienced statistically significantly higher rates of physician encounters, ED visits, and hospital stays compared with the screen negative cohort. The highest rates of ED visits and hospitalizations in the MCAD deficiency cohort occurred from 6 months to 2 years of age (ED use: 2.1-2.5 visits per child per year; hospitalization: 0.5-0.6 visits per child per year), after which rates gradually declined. Conclusions: This study confirms that young children with MCAD deficiency use health services more frequently than the general population throughout the first few years of life. Rates of service use in this population gradually diminish after 24 months of age

    Regulatory Hotspots in the Malaria Parasite Genome Dictate Transcriptional Variation

    Get PDF
    The determinants of transcriptional regulation in malaria parasites remain elusive. The presence of a well-characterized gene expression cascade shared by different Plasmodium falciparum strains could imply that transcriptional regulation and its natural variation do not contribute significantly to the evolution of parasite drug resistance. To clarify the role of transcriptional variation as a source of stain-specific diversity in the most deadly malaria species and to find genetic loci that dictate variations in gene expression, we examined genome-wide expression level polymorphisms (ELPs) in a genetic cross between phenotypically distinct parasite clones. Significant variation in gene expression is observed through direct co-hybridizations of RNA from different P. falciparum clones. Nearly 18% of genes were regulated by a significant expression quantitative trait locus. The genetic determinants of most of these ELPs resided in hotspots that are physically distant from their targets. The most prominent regulatory locus, influencing 269 transcripts, coincided with a Chromosome 5 amplification event carrying the drug resistance gene, pfmdr1, and 13 other genes. Drug selection pressure in the Dd2 parental clone lineage led not only to a copy number change in the pfmdr1 gene but also to an increased copy number of putative neighboring regulatory factors that, in turn, broadly influence the transcriptional network. Previously unrecognized transcriptional variation, controlled by polymorphic regulatory genes and possibly master regulators within large copy number variants, contributes to sweeping phenotypic evolution in drug-resistant malaria parasites

    Potential for comparative public opinion research in public administration

    Get PDF
    The public administration and public services have always taken a marginal place in the political scientists’ behavioural research. Public administration students on the other hand tend to focus on political and administrative elites and institutions, and largely ignored citizens in comparative research. In this article we make a plea for international comparative research on citizens’ attitudes towards the public administration from an interdisciplinary perspective. Available international survey material is discussed, and main trends in empirical practice and theoretical approaches are outlined, especially those with a potential impact on public sector reform

    HLA-A*11:01-restricted CD8+ T cell immunity against influenza A and influenza B viruses in Indigenous and non-Indigenous people

    Get PDF
    HLA-A*11:01 is one of the most prevalent human leukocyte antigens (HLAs), especially in East Asian and Oceanian populations. It is also highly expressed in Indigenous people who are at high risk of severe influenza disease. As CD8+ T cells can provide broadly cross-reactive immunity to distinct influenza strains and subtypes, including influenza A, B and C viruses, understanding CD8+ T cell immunity to influenza viruses across prominent HLA types is needed to rationally design a universal influenza vaccine and generate protective immunity especially for high-risk populations. As only a handful of HLA-A*11:01-restricted CD8+ T cell epitopes have been described for influenza A viruses (IAVs) and epitopes for influenza B viruses (IBVs) were still unknown, we embarked on an epitope discovery study to define a CD8+ T cell landscape for HLA-A*11:01-expressing Indigenous and non-Indigenous Australian people. Using mass-spectrometry, we identified IAV- and IBV-derived peptides presented by HLA-A*11:01 during infection. 79 IAV and 57 IBV peptides were subsequently screened for immunogenicity in vitro with peripheral blood mononuclear cells from HLA-A*11:01-expressing Indigenous and non-Indigenous Australian donors. CD8+ T cell immunogenicity screening revealed two immunogenic IAV epitopes (A11/PB2320-331 and A11/PB2323-331) and the first HLA-A*11:01-restricted IBV epitopes (A11/M41-49, A11/NS1186-195 and A11/NP511-520). The immunogenic IAV- and IBV-derived peptides were >90% conserved among their respective influenza viruses. Identification of novel immunogenic HLA-A*11:01-restricted CD8+ T cell epitopes has implications for understanding how CD8+ T cell immunity is generated towards IAVs and IBVs. These findings can inform the development of rationally designed, broadly cross-reactive influenza vaccines to ensure protection from severe influenza disease in HLA-A*11:01-expressing individuals

    CD8+ T cell landscape in Indigenous and non-Indigenous people restricted by influenza mortality-associated HLA-A*24:02 allomorph

    Get PDF
    Indigenous people worldwide are at high risk of developing severe influenza disease. HLA-A*24:02 allele, highly prevalent in Indigenous populations, is associated with influenza-induced mortality, although the basis for this association is unclear. Here, we define CD8+ T-cell immune landscapes against influenza A (IAV) and B (IBV) viruses in HLA-A*24:02-expressing Indigenous and non-Indigenous individuals, human tissues, influenza-infected patients and HLA-A*24:02-transgenic mice. We identify immunodominant protective CD8+ T-cell epitopes, one towards IAV and six towards IBV, with A24/PB2550–558-specific CD8+ T cells being cross-reactive between IAV and IBV. Memory CD8+ T cells towards these specificities are present in blood (CD27+CD45RA− phenotype) and tissues (CD103+CD69+ phenotype) of healthy individuals, and effector CD27−CD45RA−PD-1+CD38+CD8+ T cells in IAV/IBV patients. Our data show influenza-specific CD8+ T-cell responses in Indigenous Australians, and advocate for T-cell-mediated vaccines that target and boost the breadth of IAV/IBV-specific CD8+ T cells to protect high-risk HLA-A*24:02-expressing Indigenous and non-Indigenous populations from severe influenza disease
    • …
    corecore