27 research outputs found

    Antibody-Mediated Targeting of Iron Oxide Nanoparticles to the Folate Receptor Alpha Increases Tumor Cell Association In Vitro and In Vivo

    Get PDF
    Active molecular targeting has become an important aspect of nanoparticle development for oncology indications. Here, we describe molecular targeting of iron oxide nanoparticles (IONPs) to the folate receptor alpha (FOLRα) using an engineered antibody fragment (Ffab). Compared to control nanoparticles targeting the non-relevant botulinum toxin, the Ffab-IONP constructs selectively accumulated on FOLRα-overexpressing cancer cells in vitro, where they exhibited the capacity to internalize into intracellular vesicles. Similarly, Ffab-IONPs homed to FOLRα-positive tumors upon intraperitoneal administration in an orthotopic murine xenograft model of ovarian cancer, whereas negative control particles showed no detectable tumor accumulation. Interestingly, Ffab-IONPs built with custom 120 nm nanoparticles exhibited lower in vitro targeting efficiency when compared to those built with commercially sourced 180 nm nanoparticles. In vivo, however, the two Ffab-IONP platforms achieved equivalent tumor homing, although the smaller 120 nm IONPs were more prone to liver sequestration. Overall, the results show that Ffab-mediated targeting of IONPs yields specific, high-level accumulation within cancer cells, and this fact suggests that Ffab-IONPs could have future utility in ovarian cancer diagnostics and therapy

    In Vivo Cigarette Smoke Exposure Decreases CCL20, SLPI, and BD-1 Secretion by Human Primary Nasal Epithelial Cells

    Get PDF
    Smokers and individuals exposed to second-hand cigarette smoke have a higher risk of developing chronic sinus and bronchial infections. This suggests that cigarette smoke (CS) has adverse effects on immune defenses against pathogens. Epithelial cells are important in airway innate immunity and are the first line of defense against infection. Airway epithelial cells not only form a physical barrier but also respond to the presence of microbes by secreting antimicrobials, cytokines, and chemokines. These molecules can lyse infectious microorganisms and/or provide signals critical to the initiation of adaptive immune responses. We examined the effects of CS on antimicrobial secretions of primary human nasal epithelial cells (PHNECs). Compared to non-CS-exposed individuals, PHNEC from in vivo CS-exposed individuals secreted less chemokine ligand (C-C motif) 20 (CCL20), Beta-defensin 1 (BD-1), and SLPI apically, less BD-1 and SLPI basolaterally, and more CCL20 basolaterally. Cigarette smoke extract (CSE) exposure in vitro decreased the apical secretion of CCL20 and beta-defensin 1 by PHNEC from non-CS-exposed individuals. Exposing PHNEC from non-CS exposed to CSE also significantly decreased the levels of many mRNA transcripts that are involved in immune signaling. Our results show that in vivo or in vitro exposure to CS alters the secretion of key antimicrobial peptides from PHNEC, but that in vivo CS exposure is a much more important modifier of antimicrobial peptide secretion. Based on the gene expression data, it appears that CSE disrupts multiple immune signaling pathways in PHNEC. Our results provide mechanistic insight into how CS exposure alters the innate immune response and increases an individual\u27s susceptibility to pathogen infection

    Activity of immunoproteasome inhibitor ONX-0914 in acute lymphoblastic leukemia expressing MLL–AF4 fusion protein

    Get PDF
    Proteasome inhibitors bortezomib and carfilzomib are approved for the treatment of multiple myeloma and mantle cell lymphoma and have demonstrated clinical efficacy for the treatment of acute lymphoblastic leukemia (ALL). The t(4;11)(q21;q23) chromosomal translocation that leads to the expression of MLL–AF4 fusion protein and confers a poor prognosis, is the major cause of infant ALL. This translocation sensitizes tumor cells to proteasome inhibitors, but toxicities of bortezomib and carfilzomib may limit their use in pediatric patients. Many of these toxicities are caused by on-target inhibition of proteasomes in non-lymphoid tissues (e.g., heart muscle, gut, testicles). We found that MLL–AF4 cells express high levels of lymphoid tissue-specific immunoproteasomes and are sensitive to pharmacologically relevant concentrations of specific immunoproteasome inhibitor ONX-0914, even in the presence of stromal cells. Inhibition of multiple active sites of the immunoproteasomes was required to achieve cytotoxicity against ALL. ONX-0914, an inhibitor of LMP7 (ß5i) and LMP2 (ß1i) sites of the immunoproteasome, and LU-102, inhibitor of proteasome ß2 sites, exhibited synergistic cytotoxicity. Treatment with ONX-0914 significantly delayed the growth of orthotopic ALL xenograft tumors in mice. T-cell ALL lines were also sensitive to pharmacologically relevant concentrations of ONX-0914. This study provides a strong rationale for testing clinical stage immunoproteasome inhibitors KZ-616 and M3258 in ALL

    Mitochondrial ATP fuels ABC transporter-mediated drug efflux in cancer chemoresistance

    Get PDF
    Chemotherapy remains the standard of care for most cancers worldwide, however development of chemoresistance due to the presence of the drug-effluxing ATP binding cassette (ABC) transporters remains a significant problem. The development of safe and effective means to overcome chemoresistance is critical for achieving durable remissions in many cancer patients. We have investigated the energetic demands of ABC transporters in the context of the metabolic adaptations of chemoresistant cancer cells. Here we show that ABC transporters use mitochondrial-derived ATP as a source of energy to efflux drugs out of cancer cells. We further demonstrate that the loss of methylation-controlled J protein (MCJ) (also named DnaJC15), an endogenous negative regulator of mitochondrial respiration, in chemoresistant cancer cells boosts their ability to produce ATP from mitochondria and fuel ABC transporters. We have developed MCJ mimetics that can attenuate mitochondrial respiration and safely overcome chemoresistance in vitro and in vivo. Administration of MCJ mimetics in combination with standard chemotherapeutic drugs could therefore become an alternative strategy for treatment of multiple cancers

    Deletion of the Chd6 exon 12 affects motor coordination

    Get PDF
    Members of the CHD protein family play key roles in gene regulation through ATP-dependent chromatin remodeling. This is facilitated by chromodomains that bind histone tails, and by the SWI2/SNF2-like ATPase/helicase domain that remodels chromatin by moving histones. Chd6 is ubiquitously expressed in both mouse and human, with the highest levels of expression in the brain. The Chd6 gene contains 37 exons, of which exons 12-19 encode the highly conserved ATPase domain. To determine the biological role of Chd6, we generated mouse lines with a deletion of exon 12. Chd6 without exon 12 is expressed at normal levels in mice, and Chd6 Exon 12 −/− mice are viable, fertile, and exhibit no obvious morphological or pathological phenotype. Chd6 Exon 12 −/− mice lack coordination as revealed by sensorimotor analysis. Further behavioral testing revealed that the coordination impairment was not due to muscle weakness or bradykinesia. Histological analysis of brain morphology revealed no differences between Chd6 Exon 12 −/− mice and wild-type (WT) controls. The location of CHD6 on human chromosome 20q12 is overlapped by the linkage map regions of several human ataxias, including autosomal recessive infantile cerebellar ataxia (SCAR6), a nonprogressive cerebrospinal ataxia. The genomic location, expression pattern, and ataxic phenotype of Chd6 Exon 12 −/− mice indicate that mutations within CHD6 may be responsible for one of these ataxias

    Comparative aspects of canine and human inflammatory breast cancer

    Get PDF
    Inflammatory breast cancer (IBC) in humans is the most aggressive form of mammary gland cancer and shares clinical, pathologic, and molecular patterns of disease with canine inflammatory mammary carcinoma (CIMC). Despite the use of multimodal therapeutic approaches, including targeted therapies, the prognosis for IBC/CIMC remains poor. The aim of this review is to critically analyze IBC and CIMC in terms of biology and clinical features. While rodent cancer models have formed the basis of our understanding of cancer biology, the translation of this knowledge into improved outcomes has been limited. However, it is possible that a comparative “one health” approach to research, using a natural canine model of the disease, may help advance our knowledge on the biology of the disease. This will translate into better clinical outcomes for both species. We propose that CIMC has the potential to be a useful model for developing and testing novel therapies for IBC. Further, this strategy could significantly improve and accelerate the design and establishment of new clinical trials to identify novel and improved therapies for this devastating disease in a more predictable way

    Speed Kills: Advancement in Th17 Cell Adoptive Cell Therapy for Solid Tumors

    No full text

    Cecropin-like antimicrobial peptide protects mice from lethal E.coli infection.

    No full text
    Resistance of pathogenic bacteria to standard antibiotics is an issue of great concern, and new treatments for bacterial infections are needed. Antimicrobial peptides (AMPs) are small, cationic, and amphipathic molecules expressed by metazoans that kill pathogens. They are a key part of the innate immune system in both vertebrates and invertebrates. Due to their low toxicity and broad antimicrobial activities, there has been increasing attention to their therapeutic usage. Our previous research demonstrated that four peptides-DAN1, DAN2, HOLO1 and LOUDEF1-derived from recently sequenced arthropod genomes exhibited potent antimicrobial effects in-vitro. In this study, we show that DAN2 protected 100% of mice when it was administered at a concentration of 20 mg/kg thirty minutes after the inoculation of a lethal dose of E. coli intraperitoneally. Lower concentrations of DAN2-10mg/kg and 5mg/kg protected more than 2/3s of the mice. All three dose levels reduced bacterial loads in blood and peritoneal fluid by 10-fold or more when counted six hours after bacterial challenge. We determined that DAN2 acts by compromising the integrity of the E. coli membrane. This study supports the potential of DAN2 peptide as a therapeutic agent for treating antibiotic resistant Gram-negative bacterial infections

    A haplotype of human angiotensinogen gene containing −217A increases blood pressure in transgenic mice compared with −217G

    No full text
    The human angiotensinogen (hAGT) gene contains an A/G polymorphism at −217, and frequency of −217A allele is increased in African-American hypertensive patients. The hAGT gene has seven polymorphic sites in the 1.2-kb region of its promoter, and variant −217A almost always occurs with −532T, −793A, and −1074T, whereas variant −217G almost always occurs with −532C, −793G, and −1074G. Since allele −6A is the predominant allele in African-Americans, the AGT gene can be subdivided into two main haplotypes, −6A:−217A (AA) and −6A:−217G (AG). To understand the role of these haplotypes on hAGT gene expression and on blood pressure regulation in an in vivo situation, we have generated double transgenic mice containing human renin gene and either AA or AG haplotype of the hAGT gene using knock-in strategy at the hypoxanthine phosphoribosyltransferase locus. We show here that 1) hAGT mRNA level is increased in the liver by 60% and in the kidney by 40%; and 2) plasma AGT level is increased by ∼40%, and plasma angiotensin II level is increased by ∼50% in male double transgenic mice containing AA haplotype of the hAGT gene compared with the AG haplotype. In addition, systolic blood pressure is increased by 8 mmHg in transgenic mice containing the AA haplotype compared with the AG haplotype. This is the first report to show the effect of polymorphisms in the promoter of a human gene on its transcription in an in vivo situation that ultimately leads to an increase in blood pressure
    corecore