258 research outputs found

    Standard Operating Procedures and Guidelines for the Ohio State Farm Business Analysis Program

    Get PDF

    MRC2014: Extensions to the MRC format header for electron cryo-microscopy and tomography

    Get PDF
    Open Access funded by Medical Research CouncilThe MRC binary file format is widely used in the three-dimensional electron microscopy field for storing image and volume data. Files contain a header which describes the kind of data held, together with other important metadata. In response to advances in electron microscopy techniques, a number of variants to the file format have emerged which contain useful additional data, but which limit interoperability between different software packages. Following extensive discussions, the authors, who represent leading software packages in the field, propose a set of extensions to the MRC format standard designed to accommodate these variants, while restoring interoperability. The MRC format is equivalent to the map format used in the CCP4 suite for macromolecular crystallography, and the proposal also maintains interoperability with crystallography software. This Technical Note describes the proposed extensions, and serves as a reference for the standard.We thank Chris Booth and Steffen Meyer from Gatan Inc. for clarifying the format definition used by Digital Micrograph. Acknowledgement for support from National Institute of Health, USA includes: NIGMS grant P41GM103310 (AC and SD), NIBIB grant 5R01-EB005027 (DM), and R01GM080139 (SJL). RH and MW would like to thank the UK Medical Research Council for the award of Partnership Grant MR/J000825/1 to support the establishment of CCP-EM. RH and JS are also supported by MRC grant U105184322

    Genome and Environmental Activity of a Chrysochromulina parva Virus and Its Virophages

    Get PDF
    Some giant viruses are ecological agents that are predicted to be involved in the top-down control of single-celled eukaryotic algae populations in aquatic ecosystems. Despite an increased interest in giant viruses since the discovery and characterization of Mimivirus and other viral giants, little is known about their physiology and ecology. In this study, we characterized the genome and functional potential of a giant virus that infects the freshwater haptophyte Chrysochromulina parva, originally isolated from Lake Ontario. This virus, CpV-BQ2, is a member of the nucleo-cytoplasmic large DNA virus (NCLDV) group and possesses a 437 kb genome encoding 503 ORFs with a GC content of 25%. Phylogenetic analyses of core NCLDV genes place CpV-BQ2 amongst the emerging group of algae-infecting Mimiviruses informally referred to as the “extended Mimiviridae,” making it the first virus of this group to be isolated from a freshwater ecosystem. During genome analyses, we also captured and described the genomes of three distinct virophages that co-occurred with CpV-BQ2 and likely exploit CpV for their own replication. These virophages belong to the polinton-like viruses (PLV) group and encompass 19–23 predicted genes, including all of the core PLV genes as well as several genes implicated in genome modifications. We used the CpV-BQ2 and virophage reference sequences to recruit reads from available environmental metatranscriptomic data to estimate their activity in fresh waters. We observed moderate recruitment of both virus and virophage transcripts in samples obtained during Microcystis aeruginosa blooms in Lake Erie and Lake Tai, China in 2013, with a spike in activity in one sample. Virophage transcript abundance for two of the three isolates strongly correlated with that of the CpV-BQ2. Together, the results highlight the importance of giant viruses in the environment and establish a foundation for future research on the physiology and ecology CpV-BQ2 as a model system for algal Mimivirus dynamics in freshwaters

    A Murine Model to Study Epilepsy and SUDEP Induced by Malaria Infection.

    Get PDF
    One of the largest single sources of epilepsy in the world is produced as a neurological sequela in survivors of cerebral malaria. Nevertheless, the pathophysiological mechanisms of such epileptogenesis remain unknown and no adjunctive therapy during cerebral malaria has been shown to reduce the rate of subsequent epilepsy. There is no existing animal model of postmalarial epilepsy. In this technical report we demonstrate the first such animal models. These models were created from multiple mouse and parasite strain combinations, so that the epilepsy observed retained universality with respect to genetic background. We also discovered spontaneous sudden unexpected death in epilepsy (SUDEP) in two of our strain combinations. These models offer a platform to enable new preclinical research into mechanisms and prevention of epilepsy and SUDEP

    Food-Web Structure of Seagrass Communities across Different Spatial Scales and Human Impacts

    Get PDF
    Seagrass beds provide important habitat for a wide range of marine species but are threatened by multiple human impacts in coastal waters. Although seagrass communities have been well-studied in the field, a quantification of their food-web structure and functioning, and how these change across space and human impacts has been lacking. Motivated by extensive field surveys and literature information, we analyzed the structural features of food webs associated with Zostera marina across 16 study sites in 3 provinces in Atlantic Canada. Our goals were to (i) quantify differences in food-web structure across local and regional scales and human impacts, (ii) assess the robustness of seagrass webs to simulated species loss, and (iii) compare food-web structure in temperate Atlantic seagrass beds with those of other aquatic ecosystems. We constructed individual food webs for each study site and cumulative webs for each province and the entire region based on presence/absence of species, and calculated 16 structural properties for each web. Our results indicate that food-web structure was similar among low impact sites across regions. With increasing human impacts associated with eutrophication, however, food-web structure show evidence of degradation as indicated by fewer trophic groups, lower maximum trophic level of the highest top predator, fewer trophic links connecting top to basal species, higher fractions of herbivores and intermediate consumers, and higher number of prey per species. These structural changes translate into functional changes with impacted sites being less robust to simulated species loss. Temperate Atlantic seagrass webs are similar to a tropical seagrass web, yet differed from other aquatic webs, suggesting consistent food-web characteristics across seagrass ecosystems in different regions. Our study illustrates that food-web structure and functioning of seagrass habitats change with human impacts and that the spatial scale of food-web analysis is critical for determining results

    General practitioners' attitudes and preparedness towards Clinical Decision Support in e-Prescribing (CDS-eP) adoption in the West of Ireland: a cross sectional study

    Get PDF
    Background: Electronic clinical decision support (CDS) is increasingly establishing its role in evidence-based clinical practice. Considerable evidence supports its enhancement of efficiency in e-Prescribing, but some controversy remains. This study evaluated the practicality and identified the perceived benefits of, and barriers to, its future adoption in the West of Ireland. Methods: This cross sectional study was carried out by means of a 27-part questionnaire sent to 262 registered general practitioners in Counties Galway, Mayo and Roscommon. The survey domains encompassed general information of individual's practice, current use of CDS and the practitioner's attitudes towards adoption of CDS-eP. Descriptive and inferential analyses were performed to analyse the data collected. Results: The overall response rate was 37%. Nearly 92% of respondents employed electronic medical records in their practice. The majority acknowledged the value of electronic CDS in improving prescribing quality (71%) and reducing prescribing errors (84%). Despite a high degree of unfamiliarity (73%), the practitioners were open to the use of CDS-eP (94%) and willing to invest greater resources for its implementation (62%). Lack of a strategic implementation plan (78%) is the main perceived barrier to the incorporation of CDS-eP into clinical practice, followed by i) lack of financial incentives (70%), ii) lack of standardized product software (61%), iii) high sensitivity of drug-drug interaction or medication allergy markers (46%), iv) concern about overriding physicians' prescribing decisions(44%) and v) lack of convincing evidence on the systems' effectiveness (22%). Conclusions: Despite favourable attitudes towards the adoption of CDS-eP, multiple perceived barriers impede its incorporation into clinical practice. These merit further exploration, taking into consideration the structure of the Irish primary health care system, before CDS-eP can be recommended for routine clinical use in the West of Ireland.Healthcare Informatics Society of Ireland (HISI) research bursary 2007-2009Deposited by bulk impor

    Hox10 Genes Function in Kidney Development in the Differentiation and Integration of the Cortical Stroma

    Get PDF
    Organogenesis requires the differentiation and integration of distinct populations of cells to form a functional organ. In the kidney, reciprocal interactions between the ureter and the nephrogenic mesenchyme are required for organ formation. Additionally, the differentiation and integration of stromal cells are also necessary for the proper development of this organ. Much remains to be understood regarding the origin of cortical stromal cells and the pathways involved in their formation and function. By generating triple mutants in the Hox10 paralogous group genes, we demonstrate that Hox10 genes play a critical role in the developing kidney. Careful examination of control kidneys show that Foxd1-expressing stromal precursor cells are first observed in a cap-like pattern anterior to the metanephric mesenchyme and these cells subsequently integrate posteriorly into the kidney periphery as development proceeds. While the initial cap-like pattern of Foxd1-expressing cortical stromal cells is unaffected in Hox10 mutants, these cells fail to become properly integrated into the kidney, and do not differentiate to form the kidney capsule. Consistent with loss of cortical stromal cell function, Hox10 mutant kidneys display reduced and aberrant ureter branching, decreased nephrogenesis. These data therefore provide critical novel insights into the cellular and genetic mechanisms governing cortical cell development during kidney organogenesis. These results, combined with previous evidence demonstrating that Hox11 genes are necessary for patterning the metanephric mesenchyme, support a model whereby distinct populations in the nephrogenic cord are regulated by unique Hox codes, and that differential Hox function along the AP axis of the nephrogenic cord is critical for the differentiation and integration of these cell types during kidney organogenesis
    corecore