3,751 research outputs found

    Liquid Methane Conditioning Capabilities Developed at the NASA Glenn Research Center's Small Multi- Purpose Research Facility (SMiRF) for Accelerated Lunar Surface Storage Thermal Testing

    Get PDF
    Glenn Research Center s Creek Road Cryogenic Complex, Small Multi-Purpose Research Facility (SMiRF) recently completed validation / checkout testing of a new liquid methane delivery system and liquid methane (LCH4) conditioning system. Facility checkout validation was conducted in preparation for a series of passive thermal control technology tests planned at SMiRF in FY10 using a flight-like propellant tank at simulated thermal environments from 140 to 350K. These tests will validate models and provide high quality data to support consideration of LCH4/LO2 propellant combination option for a lunar or planetary ascent stage.An infrastructure has been put in place which will support testing of large amounts of liquid methane at SMiRF. Extensive modifications were made to the test facility s existing liquid hydrogen system for compatibility with liquid methane. Also, a new liquid methane fluid conditioning system will enable liquid methane to be quickly densified (sub-cooled below normal boiling point) and to be quickly reheated to saturation conditions between 92 and 140 K. Fluid temperatures can be quickly adjusted to compress the overall test duration. A detailed trade study was conducted to determine an appropriate technique to liquid conditioning with regard to the SMiRF facility s existing infrastructure. In addition, a completely new roadable dewar has been procured for transportation and temporary storage of liquid methane. A new spherical, flight-representative tank has also been fabricated for integration into the vacuum chamber at SMiRF. The addition of this system to SMiRF marks the first time a large-scale liquid methane propellant test capability has been realized at Glenn.This work supports the Cryogenic Fluid Management Project being conducted under the auspices of the Exploration Technology Development Program, providing focused cryogenic fluid management technology efforts to support NASA s future robotic or human exploration missions

    Construct validity of the pictorial scale of perceived movement skill competence

    Full text link
    Objectives: The Pictorial Scale of Perceived Movement Skill Competence (PMSC) assesses young children\u27s perceptions of movement skill competence: 12 perceived Fundamental Movement skills (FMS; based on the Test of Gross Motor Development 2nd edition TGMD-2) and six Active Play activities (e.g. cycling). The main study purpose was to assess whether children\u27s movement perception scores fit within the imposed constructs of Active Play and FMS by testing the latent structure and construct validity of the PMSC. Design: Construct validation study. Methods: Participants were part of the Melbourne Infant Feeding, Activity and Nutrition Trial (InFANT). The latent structure of the PMSC responses was tested through confirmatory factor analysis (CFA) and Bayesian Structural Equation Modeling (BSEM). Internal consistency was conducted using polychoric correlation-based alphas. Results: The 303 children (boys 53.1%, n = 161) were aged 4-5 years (M = 4.7, SD = 0.46). The final model had an 18 item 3-factor solution with good fit indices (using CFA and BSEM). Factors were: Active Play (Bike, Board Paddle, Climb, Skate/Blade, Scooter, and Swim), Object Control - Hand Skills (Bounce, Catch, Hit, Throw), and FMS skills with a leg action (Gallop, Hop, Jump, Leap, Run, Step Slide, Kick, Roll). Alpha reliability values were: Active Play (0.78), Object Control-Hand Skills (0.76) and FMS-Dynamic Leg (0.84). Conclusion: Young children can distinguish between movement perceptions. The factors reflect the hypothesized structure in terms of FMS being distinguished from Active Play. Further research should investigate how and if these constructs change in children over time

    The discovery of potent, selective, and reversible inhibitors of the house dust mite peptidase allergen Der p 1: an innovative approach to the treatment of allergic asthma.

    Get PDF
    Blocking the bioactivity of allergens is conceptually attractive as a small-molecule therapy for allergic diseases but has not been attempted previously. Group 1 allergens of house dust mites (HDM) are meaningful targets in this quest because they are globally prevalent and clinically important triggers of allergic asthma. Group 1 HDM allergens are cysteine peptidases whose proteolytic activity triggers essential steps in the allergy cascade. Using the HDM allergen Der p 1 as an archetype for structure-based drug discovery, we have identified a series of novel, reversible inhibitors. Potency and selectivity were manipulated by optimizing drug interactions with enzyme binding pockets, while variation of terminal groups conferred the physicochemical and pharmacokinetic attributes required for inhaled delivery. Studies in animals challenged with the gamut of HDM allergens showed an attenuation of allergic responses by targeting just a single component, namely, Der p 1. Our findings suggest that these inhibitors may be used as novel therapies for allergic asthma

    Clustering and Alignment of Polymorphic Sequences for HLA-DRB1 Genotyping

    Get PDF
    Located on Chromosome 6p21, classical human leukocyte antigen genes are highly polymorphic. HLA alleles associate with a variety of phenotypes, such as narcolepsy, autoimmunity, as well as immunologic response to infectious disease. Moreover, high resolution genotyping of these loci is critical to achieving long-term survival of allogeneic transplants. Development of methods to obtain high resolution analysis of HLA genotypes will lead to improved understanding of how select alleles contribute to human health and disease risk. Genomic DNAs were obtained from a cohort of n = 383 subjects recruited as part of an Ulcerative Colitis study and analyzed for HLA-DRB1. HLA genotypes were determined using sequence specific oligonucleotide probes and by next-generation sequencing using the Roche/454 GSFLX instrument. The Clustering and Alignment of Polymorphic Sequences (CAPSeq) software application was developed to analyze next-generation sequencing data. The application generates HLA sequence specific 6-digit genotype information from next-generation sequencing data using MUMmer to align sequences and the R package diffusionMap to classify sequences into their respective allelic groups. The incorporation of Bootstrap Aggregating, Bagging to aid in sorting of sequences into allele classes resulted in improved genotyping accuracy. Using Bagging iterations equal to 60, the genotyping results obtained using CAPSeq when compared with sequence specific oligonucleotide probe characterized 4-digit genotypes exhibited high rates of concordance, matching at 759 out of 766 (99.1%) alleles. © 2013 Ringquist et al

    The Flood in Genesis: What Does the Text Tell Geologists

    Get PDF
    Among the issues most critical to a diluvialist interpretation of the geological record are exegetical ones affecting our understanding of the historical record. How much of the earth was destroyed? How thoroughgoing was the destruction? What were the fountains of the deep? How long was the earth under water? How long was the period of drying off? Where were the mountains of Ararat? These questions are examined in the interest of defining what preconceptions we ought to bring to the geological record

    The N2K Consortium. II. A Transiting Hot Saturn Around HD 149026 With a Large Dense Core

    Get PDF
    Doppler measurements from Subaru and Keck have revealed radial velocity variations in the V=8.15, G0IV star HD 149026 consistent with a Saturn-Mass planet in a 2.8766 day orbit. Photometric observations at Fairborn Observatory have detected three complete transit events with depths of 0.003 mag at the predicted times of conjunction. HD 149026 is now the second brightest star with a transiting extrasolar planet. The mass of the star, based on interpolation of stellar evolutionary models, is 1.3 +/- 0.1 solar masses; together with the Doppler amplitude, K=43.3 m s^-1, we derive a planet mass Msin(i)=0.36 Mjup, and orbital radius of 0.042 AU. HD 149026 is chromospherically inactive and metal-rich with spectroscopically derived [Fe/H]=+0.36, Teff=6147 K, log g=4.26 and vsin(i)=6.0 km s^-1. Based on Teff and the stellar luminosity of 2.72 Lsun, we derive a stellar radius of 1.45 Rsun. Modeling of the three photometric transits provides an orbital inclination of 85.3 +/- 1.0 degrees and (including the uncertainty in the stellar radius) a planet radius of 0.725 +/- 0.05 Rjup. Models for this planet mass and radius suggest the presence of a ~67 Mearth core composed of elements heavier than hydrogen and helium. This substantial planet core would be difficult to construct by gravitational instability.Comment: 25 pages, 5 figures, accepted by the Astrophysical Journa

    Vegetation response to invasive Tamarix control in southwestern U.S. rivers: a collaborative study including 416 sites

    Get PDF
    Most studies assessing vegetation response following control of invasive Tamarix trees along southwestern U.S. rivers have been small in scale (e.g., river reach), or at a regional scale but with poor spatial-temporal replication, and most have not included testing the effects of a now widely used biological control. We monitored plant composition following Tamarix control along hydrologic, soil, and climatic gradients in 244 treated and 172 reference sites across six U.S. states. This represents the largest comprehensive assessment to date on the vegetation response to the four most common Tamarix control treatments. Biocontrol by a defoliating beetle (treatment 1) reduced the abundance of Tamarix less than active removal by mechanically using hand and chain-saws (2), heavy machinery (3) or burning (4). Tamarix abundance also decreased with lower temperatures, higher precipitation, and follow-up treatments for Tamarix resprouting. Native cover generally increased over time in active Tamarix removal sites, however, the increases observed were small and was not consistently increased by active revegetation. Overall, native cover was correlated to permanent stream flow, lower grazing pressure, lower soil salinity and temperatures, and higher precipitation. Species diversity also increased where Tamarix was removed. However, Tamarix treatments, especially those generating the highest disturbance (burning and heavy machinery), also often promoted secondary invasions of exotic forbs. The abundance of hydrophytic species was much lower in treated than in reference sites, suggesting that management of southwestern U.S. rivers has focused too much on weed control, overlooking restoration of fluvial processes that provide habitat for hydrophytic and floodplain vegetation. These results can help inform future management of Tamarix-infested rivers to restore hydrogeomorphic processes, increase native biodiversity and reduce abundance of noxious species
    corecore