3 research outputs found

    Structure and metabolic potential of the prokaryotic communities from the hydrothermal system of Paleochori Bay, Milos, Greece

    Get PDF
    IntroductionShallow hydrothermal systems share many characteristics with their deep-sea counterparts, but their accessibility facilitates their study. One of the most studied shallow hydrothermal vent fields lies at Paleochori Bay off the coast of Milos in the Aegean Sea (Greece). It has been studied through extensive mapping and its physical and chemical processes have been characterized over the past decades. However, a thorough description of the microbial communities inhabiting the bay is still missing.MethodsWe present the first in-depth characterization of the prokaryotic communities of Paleochori Bay by sampling eight different seafloor types that are distributed along the entire gradient of hydrothermal influence. We used deep sequencing of the 16S rRNA marker gene and complemented the analysis with qPCR quantification of the 16S rRNA gene and several functional genes to gain insights into the metabolic potential of the communities.ResultsWe found that the microbiome of the bay is strongly influenced by the hydrothermal venting, with a succession of various groups dominating the sediments from the coldest to the warmest zones. Prokaryotic diversity and abundance decrease with increasing temperature, and thermophilic archaea overtake the community.DiscussionRelevant geochemical cycles of the Bay are discussed. This study expands our limited understanding of subsurface microbial communities in acidic shallow-sea hydrothermal systems and the contribution of their microbial activity to biogeochemical cycling

    Methanocaldococcus lauensis sp. nov., a novel deep-sea hydrothermal vent hyperthermophilic methanogen

    Get PDF
    Three hyperthermophilic methanogens, designated strain SG7T, strain SG1 and strain SLH, were isolated from the ABE and Tu’i Malila deep-sea hydrothermal vent fields along the Eastern Lau Spreading Center. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strains SG7T, SG1 and SLH were affiliated with the genus Methanocaldococcus within the family Methanocaldococcaceae , order Methanococcales . They shared 95.5–99.48 % 16S rRNA gene sequence similarity to other Methanocaldococcus species and were most closely related to Methanocaldococcus bathoardescens . Cells of strains SG7T, SG1 and SLH were cocci, with a diameter of 1.0–2.2 µm. The three strains grew between 45 and 93 °C (optimum, 80–85 °C), at pH 5.0–7.1 (optimum pH 6.2) and with 10–50 g l−1 NaCl (optimum 20–25 g l−1). Genome analysis revealed the presence of a 5.1 kbp plasmid in strain SG7T. Based on the results of average nucleotide identity and digital DNA–DNA hybridization analyses, we propose that strains SG1 and SG7T are representatives of a novel species, for which the name Methanocaldococcus lauensis sp. nov. is proposed; the type strain is SG7T (=DSM 109608T=JCM 39049T)

    Methanocaldococcus Lauensis sp. nov., a Novel Deep-sea Hydrothermal Vent Hyperthermophilic Methanogen

    Get PDF
    Three hyperthermohphilic methanogens, designated strain SG7T, strain SG1 and strain SLH, were isolated from the ABE and Tu’i Malila deep-sea hydrothermal vent fields along the Eastern Lau Spreading Center. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strains SG7T, SG1 and SLH were affiliated with the genus Methanocaldococcus within the family Methanocaldococcaceae, order Methanococcales. They shared 95.5–99.48 % 16S rRNA gene sequence similarity to other Methanocaldococcus species and were most closely related to Methanocaldococcus bathoardescens. Cells of strains SG7T, SG1 and SLH were cocci, with a diameter of 1.0–2.2 µm. The three strains grew between 45 and 93 °C (optimum, 80–85 °C), at pH 5.0–7.1 (optimum pH 6.2) and with 10–50 g l−1 NaCl (optimum 20–25 g l−1). Genome analysis revealed the presence of a 5.1 kbp plasmid in strain SG7T. Based on the results of average nucleotide identity and digital DNA–DNA hybridization analyses, we propose that strains SG1 and SG7T are representatives of a novel species, for which the name Methanocaldococcus lauensis sp. nov. is proposed; the type strain is SG7T (=DSM 109608T=JCM 39049T)
    corecore