102 research outputs found

    Hybrid Ion-Detector/Data-Acquisition System for a TOF-MS

    Get PDF
    A modified ion-detector/data-acquisition system has been devised to increase the dynamic range of a time-of-flight mass spectrometer (TOF-MS) that, previously, included a microchannel-plate detector and a data-acquisition system based on counting pulses and time-tagging them by use of a time-to-digital converter (TDC). The dynamic range of the TOF-MS was limited by saturation of the microchannel plate detector, which can handle no more than a few million counts per second. The modified system includes (1) a combined microchannel plate/discrete ion multiplier and (2) a hybrid data-acquisition system that simultaneously performs analog current or voltage measurements and multianode single-ion-pulse-counting time-of-flight measurements to extend the dynamic range of a TDC into the regime in which a mass peak comprises multiple ions arriving simultaneously at the detector. The multianode data are used to determine, in real time, whether the detector is saturated. When saturation is detected, the data-acquisition system selectively enables circuitry that simultaneously determines the ion-peak intensity by measuring the time profile of the analog current or voltage detector-output signal

    Effect of Soybean Oil Fatty Acid Composition and Selenium Application on Biodiesel Properties

    Get PDF
    Biodiesel consisting principally of monounsaturated fatty acid methyl esters (FAME) has been reported to have the optimal balance between cold flow properties and oxidative stability, therefore producing a superior fuel. In addition, treating biodiesel with antioxidants such as selenium (Se) also increases oxidative stability. Fuel properties including acid value (AV), cloud point (CP), iodine value (IV), pour point (PP), peroxide value (PV), induction period (IP), onset temperature (OT), and kinematic viscosity (KV) were used to evaluate a newly developed Roundup Ready® soybean recombinant inbred line (RIL) and a commercial cultivar. The RIL had a fatty acid profile with elevated levels of monounsaturated FAME. TN07-93RR was determined as the more desirable line for production of biodiesel, based on its fatty acid composition and subsequent fuel properties. The commercial cultivar AG3906 contained the highest abundance of polyunsaturated FAME and exhibited comparatively high IV and low oxidative stability. AG3906 was therefore not acceptable under the European biodiesel standard, EN 14214. However, TN07-93RR and AG3906 both were considered satisfactory according to the American biodiesel standard, ASTM D6751. Foliar treatment of soybean plants with varying amounts of Se had no effect on subsequent biodiesel oxidative stabilities

    Insecticidal activity of bio-oils and biochar as pyrolysis products and their combination with microbial agents against Agrotis ipsilon (Lepidoptera: Noctuidae)

    Get PDF
    Pyrolysis technology for producing biochar and bio-oils can be used as a potential alternative to make biopesticides, which are urgently needed in integrated pest management (IPM). Insecticidal activity of three components of bio-oils: aqueous, organic and their mixture, was evaluated individually and with three different entomopathogens: the baculovirus Agrotis ipsilon nucleopolyhedrovirus (AgipMNPV), bacterium Bacillus thuringensis var. kurstaki (Bt) and fungus Beauveria bassiana (Bb) against black cutworm, Agrotis ipsilon (Hufnagel). The effect of alkaline conditions of spray-dried biochar was studied simultaneously with the microbial pathogens. Our bioassay results indicated that the organic bio-oil phase was the most active, causing 100% mortality after 24 h, when the median lethal toxicity values LC50s (mg/ml) were found. However, the bio-oil fractions applied alone tended to cause higher mortality of the exposed larvae than did either mix with the microbial agents. Also, the results revealed that maximum mortalities were found in spray-dried formulations made with biochar at pH 7.1. It was concluded that pyrolysis oils are effective insecticides, and biochar could be a useful additive in production and formulation of biopesticides. This interesting finding further promotes the use of pyrolysis bio-oils and biochar compounds as eco-friendly alternatives to replace conventional pesticides

    I only have eyes for you: Ovulation redirects attention (but not memory) to attractive men

    Get PDF
    A number of studies have found a disjunction between women’s attention to, and memory for, handsome men. Although women pay initial attention to handsome men, they do not remember those men later. The present study examines how ovulation might differentially affect these attentional and memory processes. We found that women near ovulation increased their visual attention to attractive men. However, this increased visual attention did not translate into better memory. Discussion focuses on possible explanations, in the context of an emerging body of findings on disjunctions between attention to, and memory for, other people.National Institute of Mental Health (U.S.) (R01MH064734

    Site Selection for Coral Reef Restoration Using Airborne Imaging Spectroscopy

    Get PDF
    Over the past decade, coral restoration efforts have increased as reefs continue to decline at unprecedented rates. Identifying suitable coral outplanting locations to maximize coral survival continues to be one of the biggest challenges for restoration practitioners. Here, we demonstrate methods of using derivatives from imaging spectroscopy from the Global Airborne Observatory (GAO) to identify suitable coral outplant sites and report on the survival rates of restored coral at those sites. Outplant sites for a community-based, citizen science outplant event in Bávaro, Dominican Republic, were identified using expert-defined criteria applied to a suitability model from data layers derived from airborne imagery. Photo quadrat analysis of the benthic community confirmed the accuracy of airborne remote sensing maps with live coral cover averaging 3.5–4% and mean algal cover (macro algae and turf) ranging from 28 to 32%. Coral outplant sites were selected at 3–7 m depth with maximized levels of habitat complexity (i.e., rugosity) and live coral cover and minimized levels of macroalgal cover, as predicted by the imaging spectrometer data. In November 2019, 1,722 Acropora cervicornis fragments (80–180 mm in length) were outplanted to these sites. Surveys conducted in January 2020 in four of these sites confirmed that 92% of outplants survived after 3 months. By October 2020 (11 months after outplanting), survivorship remained above 76%. These results demonstrate higher than average success rates for coral outplant survival for this species. An online tool was developed to enable replication and facilitate future selection of coral restoration sites. Our objective is to present a case study that uses GAO-derived map products within a suitability model framework to provide a quantitative and replicable method for selecting coral restoration sites with the goal of increasing outplant survival over time

    The use of fatty acid profile as a potential marker for Brazilian coffee (Coffea arabica L.) for corn adulteration

    Full text link
    Fatty acid methyl ester (FAME) composition of the coffee (Coffea arabica L.) varieties Catuai, Catucaí, Bourbom, Mundo Novo, Rubí and Topázio known to produce beverage of intermediate, excellent, excellent, intermediate, intermediate and poor quality, respectively, was determined for the first time. Average area % of the FAMEs of the six varieties was: palmitic (38.2), stearic (8.3), oleic (8.6), linoleic (38.5), linolenic (1.6) and arachidic (3.6) acids, respectively. The method was very quick with complete characterization (>99%) of the samples studied being possible in less than 6 min. While these values may provide insights for evaluating the coffee quality, no significant effect (p < 0.05) of coffee variety was found on area % of the FAMEs. In addition, FAMEs of six corn samples, six commercial coffee brands and one commercial coffee sample intentionally contaminated with three levels of corn were compared. Although the linoleic/stearic ratio was significantly different in coffee and corn FAMEs, this probe could not be used a marker to detect corn adulteration in commercial coffees

    Forecasting the combined effects of anticipated climate change and agricultural conservation practices on fish recruitment dynamics in Lake Erie

    Full text link
    Many aquatic ecosystems are experiencing multiple anthropogenic stressors that threaten their ability to support ecologically and economically important fish species. Two of the most ubiquitous stressors are climate change and non- point source nutrient pollution.Agricultural conservation practices (ACPs, i.e. farming practices that reduce runoff, prevent erosion, and curb excessive nutrient loading) offer a potential means to mitigate the negative effects of non- point source pollution on fish populations. However, our understanding of how ACP implementation amidst a changing climate will affect fish production in large ecosystems that receive substantial upstream sediment and nutrient inputs remains incomplete.Towards this end, we explored how anticipated climate change and the implementation of realistic ACPs might alter the recruitment dynamics of three fish populations (native walleye Sander vitreus and yellow perch Perca flavescens and invasive white perch Morone americana) in the highly productive, dynamic west basin of Lake Erie. We projected future (2020- 2065) recruitment under different combinations of anticipated climate change (n = 2 levels) and ACP implementation (n = 4 levels) in the western Lake Erie catchment using predictive biological models driven by forecasted winter severity, spring warming rate, and Maumee River total phosphorus loads that were generated from linked climate, catchment- hydrology, and agricultural- practice- simulation models.In general, our models projected reduced walleye and yellow perch recruitment whereas invasive white perch recruitment was projected to remain stable or increase relative to the recent past. Our modelling also suggests the potential for trade- offs, as ACP implementation was projected to reduce yellow perch recruitment with anticipated climate change.Overall, our study presents a useful modelling framework to forecast fish recruitment in Lake Erie and elsewhere, as well as offering projections and new avenues of research that could help resource management agencies and policy- makers develop adaptive and resilient management strategies in the face of anticipated climate and land- management change.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/156436/2/fwb13515.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/156436/1/fwb13515_am.pd

    The Splicing Efficiency of Activating HRAS Mutations Can Determine Costello Syndrome Phenotype and Frequency in Cancer

    Get PDF
    Costello syndrome (CS) may be caused by activating mutations in codon 12/13 of the HRAS proto-oncogene. HRAS p.Gly12Val mutations have the highest transforming activity, are very frequent in cancers, but very rare in CS, where they are reported to cause a severe, early lethal, phenotype. We identified an unusual, new germline p.Gly12Val mutation, c.35_36GC>TG, in a 12-year-old boy with attenuated CS. Analysis of his HRAS cDNA showed high levels of exon 2 skipping. Using wild type and mutant HRAS minigenes, we confirmed that c.35_36GC>TG results in exon 2 skipping by simultaneously disrupting the function of a critical Exonic Splicing Enhancer (ESE) and creation of an Exonic Splicing Silencer (ESS). We show that this vulnerability of HRAS exon 2 is caused by a weak 3' splice site, which makes exon 2 inclusion dependent on binding of splicing stimulatory proteins, like SRSF2, to the critical ESE. Because the majority of cancer- and CS- causing mutations are located here, they affect splicing differently. Therefore, our results also demonstrate that the phenotype in CS and somatic cancers is not only determined by the different transforming potentials of mutant HRAS proteins, but also by the efficiency of exon 2 inclusion resulting from the different HRAS mutations. Finally, we show that a splice switching oligonucleotide (SSO) that blocks access to the critical ESE causes exon 2 skipping and halts proliferation of cancer cells. This unravels a potential for development of new anti-cancer therapies based on SSO-mediated HRAS exon 2 skipping
    corecore