189 research outputs found

    Long-term impact of sewage sludge application on soil microbial biomass: An evaluation using meta-analysis

    Get PDF
    The Long-Term Sludge Experiments (LTSE) began in 1994 as part of continuing research into the effects of sludge-borne heavy metals on soil fertility. The long-term effects of Zn, Cu, and Cd on soil microbial biomass carbon (Cmic) were monitored for 8 years (1997-2005) in sludge amended soils at nine UK field sites. To assess the statutory limits set by the UK Sludge (Use in Agriculture) Regulations the experimental data has been reviewed using the statistical methods of meta-analysis. Previous LTSE studies have focused predominantly on statistical significance rather than effect size, whereas meta-analysis focuses on the magnitude and direction of an effect, i.e. the practical significance, rather than its statistical significance. The results presented here show that significant decreases in Cmic have occurred in soils where the total concentrations of Zn and Cu fall below the current UK statutory limits. For soils receiving sewage sludge predominantly contaminated with Zn, decreases of approximately 7–11% were observed at concentrations below the UK statutory limit. The effect of Zn appeared to increase over time, with increasingly greater decreases in Cmic observed over a period of 8 years. This may be due to an interactive effect between Zn and confounding Cu contamination which has augmented the bioavailability of these metals over time. Similar decreases (7–12%) in Cmic were observed in soils receiving sewage sludge predominantly contaminated with Cu; however, Cmic appeared to show of recovery after a period of 6 years. Application of sewage sludge predominantly contaminated with Cd appeared to have no effect on Cmic at concentrations below the current UK statutory limit

    Long-term Impact of sewage sludge application on rhizobium leguminosarum biovar trifolii: an evaluation using meta-analysis

    Get PDF
    The Long-Term Sludge Experiment (LTSE) began in 1994 at nine UK field sites as part of continuing research into the effects of sludge-borne heavy metals on soil fertility. The long-term effects of Zn, Cu, and Cd on the most probable numbers of cells (MPN) of Rhizobium leguminosarum biovar trifolii were monitored for 8 yr in sludge-amended soils. To assess the statutory limits set by the UK Sludge (Use in Agriculture) Regulations, the experimental data were reviewed using statistical methods of meta-analysis. Previous LTSE studies have focused predominantly on statistical significance rather than effect size, whereas meta-analysis focuses on the magnitude and direction of an effect, i.e., the practical significance rather than its statistical significance. Results showed Zn to be the most toxic element causing an overall significant decrease in Rhizobium MPN of −26.6% during the LTSE. The effect of Cu showed no significant effect on Rhizobium MPN at concentrations below the UK limits, although a −5% decrease in Rhizobium MPN was observed in soils where total Cu ranged from 100 to <135 mg kg−1. Overall, there was nothing to indicate that Cd had a significant effect on Rhizobium MPN below the current UK statutory limit. In summary, the UK statutory limit for Zn appears to be insufficient for protecting Rhizobium from Zn toxicity effects

    Potential Co-benefits and trade-offs between improved soil management, climate change mitigation and agri-food productivity

    Get PDF
    Maximising resource-use efficiency, productivity and environmental sustainability are all fundamental requirements to raise global food production by ~70 per cent in order to feed a world population of ~9.7 billion people by 2050. Perhaps the most vital resource within our capacity to achieve this goal is our soil. Broadly, the fundamental question concerns whether or not satisfying this production demand will accelerate soil degradation, climate change, and the loss of soil carbon stocks. This paper builds upon the outputs of the UK Charity ‘Food & Farming Futures’ (chaired by Lord Curry of Kirkharle) virtual workshop held on 23 March 2021, entitled ‘Capturing the Potential of Soil’. The event focussed on the link between soil health, primarily soil organic carbon (SOC), and agricultural productivity. Supported with commentaries by Professor Pete Smith (University of Aberdeen and Science Director of the Scottish Climate Change Centre of Expertise) and Professor Steve McGrath (Head of Sustainable Agricultural Sciences at Rothamsted Research), specific focus will be given to the research challenges within the UK’s ability to improve soil health and functionality, the implementation priorities that must be held in order to improve soil management by 2050 and what the potential co-benefits could be. These co-benefits were scattered across environmental, economic, social and political issues, yet they may be summarised into six primary co-benefits: developing natural capital, climate change mitigation, carbon trading, improvements in crop yield, animal performance and human health (nutrition). Additionally, the main barriers to improved soil management practices are centred on knowledge exchange-regarding agri-environmental techniques—whilst the most impactful solutions rely on soil monitoring, reporting and verification

    Plant-microbe networks in soil are weakened by century-long use of inorganic fertilizers.

    Get PDF
    Understanding the changes in plant-microbe interactions is critically important for predicting ecosystem functioning in response to human-induced environmental changes such as nitrogen (N) addition. In this study, the effects of a century-long fertilization treatment (&gt; 150 years) on the networks between plants and soil microbial functional communities, detected by GeoChip, in grassland were determined in the Park Grass Experiment at Rothamsted Research, UK. Our results showed that plants and soil microbes have a consistent response to long-term fertilization-both richness and diversity of plants and soil microbes are significantly decreased, as well as microbial functional genes involved in soil carbon (C), nitrogen (N) and phosphorus (P) cycling. The network-based analyses showed that long-term fertilization decreased the complexity of networks between plant and microbial functional communities in terms of node numbers, connectivity, network density and the clustering coefficient. Similarly, within the soil microbial community, the strength of microbial associations was also weakened in response to long-term fertilization. Mantel path analysis showed that soil C and N contents were the main factors affecting the network between plants and microbes. Our results indicate that century-long fertilization weakens the plant-microbe networks, which is important in improving our understanding of grassland ecosystem functions and stability under long-term agriculture management

    Genome Wide Association Mapping of Grain Arsenic, Copper, Molybdenum and Zinc in Rice (Oryza sativa L.) Grown at Four International Field Sites

    Get PDF
    The mineral concentrations in cereals are important for human health, especially for individuals who consume a cereal subsistence diet. A number of elements, such as zinc, are required within the diet, while some elements are toxic to humans, for example arsenic. In this study we carry out genome-wide association (GWA) mapping of grain concentrations of arsenic, copper, molybdenum and zinc in brown rice using an established rice diversity panel of ~300 accessions and 36.9 k single nucleotide polymorphisms (SNPs). The study was performed across five environments: one field site in Bangladesh, one in China and two in the US, with one of the US sites repeated over two years. GWA mapping on the whole dataset and on separate subpopulations of rice revealed a large number of loci significantly associated with variation in grain arsenic, copper, molybdenum and zinc. Seventeen of these loci were detected in data obtained from grain cultivated in more than one field location, and six co-localise with previously identified quantitative trait loci. Additionally, a number of candidate genes for the uptake or transport of these elements were located near significantly associated SNPs (within 200 kb, the estimated global linkage disequilibrium previously employed in this rice panel). This analysis highlights a number of genomic regions and candidate genes for further analysis as well as the challenges faced when mapping environmentally- variable traits in a highly genetically structured diversity panel

    Selenium uptake, translocation and speciation in wheat supplied with selenate or selenite

    Get PDF
    Selenite can be a dominant form of selenium (Se) in aerobic soils; however, unlike selenate, the mechanism of selenite uptake by plants remains unclear. Uptake, translocation and Se speciation in wheat (Triticum aestivum) supplied with selenate or selenite, or both, were investigated in hydroponic experiments. The kinetics of selenite influx was determined in short-term (30 min) experiments. Selenium speciation in the water-extractable fraction of roots and shoots was determined by HPLC-ICPMS. Plants absorbed similar amounts of Se within 1 d when supplied with selenite or selenate. Selenate and selenite uptake were enhanced in sulphur-starved and phosphorus-starved plants, respectively. Phosphate markedly increased K-m of the selenite influx. Selenate and selenite uptake were both metabolically dependent. Selenite was rapidly converted to organic forms in roots, with limited translocation to shoots. Selenomethionine, selenomethionine Se-oxide, Se-methyl-selenocysteine and several other unidentified Se species were detected in the root extracts and xylem sap from selenite-treated plants. Selenate was highly mobile in xylem transport, but little was assimilated to organic forms in 1 d. The presence of selenite decreased selenate uptake and xylem transport. Selenite uptake is an active process likely mediated, at least partly, by phosphate transporters. Selenite and selenate differ greatly in the ease of assimilation and xylem transport

    High C3 photosynthetic capacity and high intrinsic water use efficiency underlies the high productivity of the bioenergy grass Arundo donax

    Get PDF
    AbstractArundo donax has attracted interest as a potential bioenergy crop due to a high apparent productivity. It uses C3 photosynthesis yet appears competitive with C4 grass biomass feedstock’s and grows in warm conditions where C4 species might be expected to be that productive. Despite this there has been no systematic study of leaf photosynthetic properties. This study determines photosynthetic and photorespiratory parameters for leaves in a natural stand of A. donax growing in southern Portugal. We hypothesise that A. donax has a high photosynthetic potential in high and low light, stomatal limitation to be small and intrinsic water use efficiency unusually low. High photosynthetic rates in A. donax resulted from a high capacity for both maximum Rubisco (Vc,max 117 μmol CO2 m−2 s−1) and ribulose-1:5-bisphosphate limited carboxylation rate (Jmax 213 μmol CO2 m−2 s−1) under light-saturated conditions. Maximum quantum yield for light-limited CO2 assimilation was also high relative to other C3 species. Photorespiratory losses were similar to other C3 species under the conditions of measurement (25%), while stomatal limitation was high (0.25) resulting in a high intrinsic water use efficiency. Overall the photosynthetic capacity of A. donax is high compared to other C3 species and comparable to C4 bioenergy grasses.</jats:p

    Biofortification of UK food crops with selenium

    Get PDF
    Se is an essential element for animals. In man low dietary Se intakes are associated with health disorders including oxidative stress-related conditions, reduced fertility and immune functions and an increased risk of cancers. Although the reference nutrient intakes for adult females and males in the UK are 60 and 75 μg Se/d respectively, dietary Se intakes in the UK have declined from >60 μg Se/d in the 1970s to 35 μg Se/d in the 1990s, with a concomitant decline in human Se status. This decline in Se intake and status has been attributed primarily to the replacement of milling wheat having high levels of grain Se and grown on high-Se soils in North America with UK-sourced wheat having low levels of grain Se and grown on low-Se soils. An immediate solution to low dietary Se intake and status is to enrich UK-grown food crops using Se fertilisers (agronomic biofortification). Such a strategy has been adopted with success in Finland. It may also be possible to enrich food crops in the longer term by selecting or breeding crop varieties with enhanced Se-accumulation characteristics (genetic biofortification). The present paper will review the potential for biofortification of UK food crops with Se
    corecore