37 research outputs found

    The synthesis and biological evaluation of a kabiramide C fragment modified with a WH2 consensus actin-binding motif as a potential disruptor of the actin cytoskeleton

    Get PDF
    Despite its low affinity for actin monomers, a fragment of kabiramide C disrupts actin filamentsin vitroand in cells.</p

    Depletion of the actin bundling protein SM22/transgelin increases actin dynamics and enhances the tumourigenic phenotypes of cells

    Get PDF
    Background SM22 has long been studied as an actin-associated protein. Interestingly, levels of SM22 are often reduced in tumour cell lines, while they are increased during senescence possibly indicating a role for SM22 in cell fate decisions via its interaction with actin. In this study we aimed to determine whether reducing levels of SM22 could actively contribute to a tumourigenic phenotype. Results We demonstrate that in REF52 fibroblasts, decreased levels of SM22 disrupt normal actin organization leading to changes in the motile behaviour of cells. Interestingly, SM22 depletion also led to an increase in the capacity of cells to spontaneously form podosomes with a concomitant increase in the ability to invade Matrigel. In PC3 prostate epithelial cancer cells by contrast, where SM22 is undetectable, re-expression of SM22 reduced the ability to invade Matrigel. Furthermore SM22 depleted cells also had reduced levels of reactive oxygen species when under serum starvation stress. Conclusions These findings suggest that depletion of SM22 could contribute to tumourigenic properties of cells. Reduction in SM22 levels would tend to promote cell survival when cells are under stress, such as in a hypoxic tumour environment, and may also contribute to increases in actin dynamics that favour metastatic potential

    Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with β-dystroglycan

    Get PDF
    In skeletal muscle, the cytolinker plectin is prominently expressed at Z-disks and the sarcolemma. Alternative splicing of plectin transcripts gives rise to more than eight protein isoforms differing only in small N-terminal sequences (5–180 residues), four of which (plectins 1, 1b, 1d, and 1f) are found at substantial levels in muscle tissue. Using plectin isoform–specific antibodies and isoform expression constructs, we show the differential regulation of plectin isoforms during myotube differentiation and their localization to different compartments of muscle fibers, identifying plectins 1 and 1f as sarcolemma-associated isoforms, whereas plectin 1d localizes exclusively to Z-disks. Coimmunoprecipitation and in vitro binding assays using recombinant protein fragments revealed the direct binding of plectin to dystrophin (utrophin) and β-dystroglycan, the key components of the dystrophin–glycoprotein complex. We propose a model in which plectin acts as a universal mediator of desmin intermediate filament anchorage at the sarcolemma and Z-disks. It also explains the plectin phenotype observed in dystrophic skeletal muscle of mdx mice and Duchenne muscular dystrophy patients

    Preventing phosphorylation of dystroglycan ameliorates the dystrophic phenotype in mdx mouse

    Get PDF
    Loss of dystrophin protein due to mutations in the DMD gene causes Duchenne muscular dystrophy. Dystrophin loss also leads to the loss of the dystrophin glycoprotein complex (DGC) from the sarcolemma which contributes to the dystrophic phenotype. Tyrosine phosphorylation of dystroglycan has been identified as a possible signal to promote the proteasomal degradation of the DGC. In order to test the role of tyrosine phosphorylation of dystroglycan in the aetiology of DMD, we generated a knock-in mouse with a phenylalanine substitution at a key tyrosine phosphorylation site in dystroglycan, Y890. Dystroglycan knock-in mice (Dag1Y890F/Y890F) had no overt phenotype. In order to examine the consequence of blocking dystroglycan phosphorylation on the aetiology of dystrophin-deficient muscular dystrophy, the Y890F mice were crossed with mdx mice an established model of muscular dystrophy. Dag1Y890F/Y890F/mdx mice showed a significant improvement in several parameters of muscle pathophysiology associated with muscular dystrophy, including a reduction in centrally nucleated fibres, less Evans blue dye infiltration and lower serum creatine kinase levels. With the exception of dystrophin, other DGC components were restored to the sarcolemma including ι-sarcoglycan, ι-/β-dystroglycan and sarcospan. Furthermore, Dag1Y890F/Y890F/mdx showed a significant resistance to muscle damage and force loss following repeated eccentric contractions when compared with mdx mice. While the Y890F substitution may prevent dystroglycan from proteasomal degradation, an increase in sarcolemmal plectin appeared to confer protection on Dag1Y890F/Y890F/mdx mouse muscle. This new model confirms dystroglycan phosphorylation as an important pathway in the aetiology of DMD and provides novel targets for therapeutic intervention

    Dystroglycan versatility in cell adhesion: a tale of multiple motifs

    Get PDF
    Dystroglycan is a ubiquitously expressed heterodimeric adhesion receptor. The extracellular a-subunit makes connections with a number of laminin G domain ligands including laminins, agrin and perlecan in the extracellular matrix and the transmembrane b-subunit makes connections to the actin filament network via cytoskeletal linkers including dystrophin, utrophin, ezrin and plectin, depending on context. Originally discovered as part of the dystrophin glycoprotein complex of skeletal muscle, dystroglycan is an important adhesion molecule and signalling scaffold in a multitude of cell types and tissues and is involved in several diseases. Dystroglycan has emerged as a multifunctional adhesion platform with many interacting partners associating with its short unstructured cytoplasmic domain. Two particular hotspots are the cytoplasmic juxtamembrane region and at the very carboxy terminus of dystroglycan. Regions which between them have several overlapping functions: in the juxtamembrane region; a nuclear localisation signal, ezrin/radixin/moesin protein, rapsyn and ERK MAP Kinase binding function, and at the C terminus a regulatory tyrosine governing WW, SH2 and SH3 domain interactions. We will discuss the binding partners for these motifs and how their interactions and regulation can modulate the involvement of dystroglycan in a range of different adhesion structures and functions depending on context. Thus dystroglycan presents as a multifunctional scaffold involved in adhesion and adhesion-mediated signalling with its functions under exquisite spatiotemporal regulation

    Dystrophin: more than just the sum of its parts.

    No full text
    International audienceDystrophin is one of a number of large cytoskeleton associated proteins that connect between various cytoskeletal elements and often are tethered to the membrane through other transmembrane protein complexes. These cytolinker proteins often provide structure and support to the cells where they are expressed, and mutations in genes encoding these proteins frequently gives rise to disease. Dystrophin is no exception in any of these respects, providing connections between a transmembrane complex known as the dystrophin-glycoprotein complex and the underlying cytoskeleton. The most established connection and possibly the most important is that to F-actin, but more recently evidence has been forthcoming of connections to membrane phospholipids, intermediate filaments and microtubules. Moreover it is becoming increasingly clear that the multiple spectrin-like repeats in the centre of the molecule, that had hitherto been thought to be largely redundant, harbour binding activities that have a significant impact on dystrophin functionality. This functionality is particularly apparent when assessed by the ability to rescue the dystrophic phenotype in mdx mice. This review will focus on the relatively neglected but functionally vital coiled-coil region of dystrophin, highlighting the structural relationships and interactions of the coiled-coil region and providing new insights into the functional role of this region

    The proteasomal inhibitor MG132 prevents muscular dystrophy in zebrafish

    No full text
    Using sapje zebrafish which lack dystrophin, we have assessed both the quantitation of muscle damage in dystrophic fish, and the efficacy of the proteasomal inhibitor MG132 in reducing the dystrophic symptoms. Fourier analysis of birefringence patterns in normal and dystrophic fish was found to be a simple and reliable quantitative measure of muscle damage. MG132, as in mdx mouse, was found to be effective in reducing muscle damage with an EC50 of 0.4ÂľM. This study adds further to the utility of zebrafish as a model of choice for testing muscular dystrophy therapeutics
    corecore