355 research outputs found
Characterisation of rejection episodes in an incident population of kidney transplant recipients
Kidney transplantation (Tx) is the therapy of choice for end-stage renal disease. It
has been proven that the survival within transplanted patients, compared with dialysis
patients, is greater. However, it is known that several factors can influence the graft
outcome. One of them is the acute rejection, resulting from the innate and adaptive
immune responses to foreign donor antigens. However, no study has been
conducted to identify what are this factors in our centre yet.
In this study, we aim to update the database of the Lausanne/CHUV kidney
transplant recipients cohort in order to characterize this population. We intend to
identify the determinants associated with graft rejection and graft outcome at 1-year
post transplantation.
Clinical data are provided from the CHUV prospective databases from the day of Tx
to one year post Tx. We first performed a general analysis of all confounding factors
that we considered relevant based on recipientsâ graft function at one year after Tx.
We studied then associations between immunological and clinical factor with acute
graft rejection. We finally compared acute cellular rejection (ACR) to acute antibody
mediated rejection (AMR).
After one year, the rate of acute rejection was 15.9% (47.5% ACR and 25% AMR).
Main found predictors tended to be related rather with acute AMR and reflected presensitization
(prior transplantation, positive last PRA values and pre-existing DSA).
Acute rejection was associated with decreased renal function (by around 14 ml/min of
GFR in the first year)
Interleukin-35-Producing CD8α(+) Dendritic Cells Acquire a Tolerogenic State and Regulate T Cell Function.
Dendritic cells (DCs) play a central role in shaping immunogenic as well as tolerogenic adaptive immune responses and thereby dictate the outcome of adaptive immunity. Here, we report the generation of a CD8α(+) DC line constitutively secreting the tolerogenic cytokine interleukin (IL)-35. IL-35 secretion led to impaired CD4(+) and CD8(+) T lymphocyte proliferation and interfered with their function in vitro and also in vivo. IL-35 was furthermore found to induce a tolerogenic phenotype on CD8α(+) DCs, characterized by the upregulation of CD11b, downregulation of MHC class II, a reduced costimulatory potential as well as production of the immunomodulatory molecule IL-10. Vaccination of mice with IL-35-expressing DCs promoted tumor growth and reduced the severity of autoimmune encephalitis not only in a preventive but also after induction of encephalitogenic T cells. The reduction in experimental autoimmune encephalitis severity was significantly more pronounced when antigen-pulsed IL-35(+) DCs were used. These findings suggest a new, indirect effector mechanism by which IL-35-responding antigen-presenting cells contribute to immune tolerance. Furthermore, IL-35-transfected DCs may be a promising approach for immunotherapy in the context of autoimmune diseases
NsrR: a key regulator circumventing Salmonella enterica serovar Typhimurium oxidative and nitrosative stress in vitro and in IFN-Îł-stimulated J774.2 macrophages
Over the past decade, the flavohaemoglobin Hmp has emerged as the most significant nitric oxide (NO)-detoxifying protein in many diverse micro-organisms, particularly pathogenic bacteria. Its expression in enterobacteria is dramatically increased on exposure to NO and other agents of nitrosative stress as a result of transcriptional regulation of hmp gene expression, mediated by (at least) four regulators. One such regulator, NsrR, has recently been shown to be responsible for repression of hmp transcription in the absence of NO in Escherichia coli and Salmonella, but the roles of other members of this regulon in Salmonella, particularly in surviving nitrosative stresses in vitro and in vivo, have not been elucidated. This paper demonstrates that an nsrR mutant of Salmonella enterica Serovar Typhimurium expresses high levels of Hmp both aerobically and anaerobically, exceeding those that can be elicited in vitro by supplementing media with S-nitrosoglutathione (GSNO). Elevated transcription of ytfE, ygbA, hcp and hcp is also observed, but no evidence was obtained for tehAB upregulation. The hyper-resistance to GSNO of an nsrR mutant is attributable solely to Hmp, since an nsrR hmp double mutant has a wild-type phenotype. However, overexpression of NsrR-regulated genes other than hmp confers some resistance of respiratory oxygen consumption to NO. The ability to enhance, by mutating NsrR, Hmp levels without recourse to exposure to nitrosative stress was used to test the hypothesis that control of Hmp levels is required to avoid oxidative stress, Hmp being a potent generator of superoxide. Within IFN-Îł-stimulated J774.2 macrophages, in which high levels of nitrite accumulated (indicative of NO production) an hmp mutant was severely compromised in survival. Surprisingly, under these conditions, an nsrR mutant (as well as an nsrR hmp double mutant) was also disadvantaged relative to the wild-type bacteria, attributable to the combined oxidative effect of the macrophage oxidative burst and Hmp-generated superoxide. This explanation is supported by the sensitivity in vitro of an nsrR mutant to superoxide and peroxide. Fur has recently been confirmed as a weak repressor of hmp transcription, and a fur mutant was also compromised for survival within macrophages even in the absence of elevated NO levels in non-stimulated macrophages. The results indicate the critical role of Hmp in protection of Salmonella from nitrosative stress within and outside macrophages, but also the key role of transcriptional regulation in tuning Hmp levels to prevent exacerbation of the oxidative stress encountered in macrophages
Establishment and Characterization of a Functionally Competent Type 2 Conventional Dendritic Cell Line.
Dendritic cells (DCs) are the most potent antigen presenting cells and possess an incomparable ability to activate and instruct T cells, which makes them one of the cornerstones in the regulation of the cross-talk between innate and adaptive immunity. Therefore, a deep understanding of DC biology lays the foundations to describe and to harness the mechanisms that regulate the development of the adaptive response, with clear implications in a vast array of fields such as the study of autoimmune diseases and the development of new vaccines. However, the great difficulty to obtain large quantities of viable non-activated DCs for experimentation have considerably hindered the progress of DC research. Several strategies have been proposed to overcome these limitations by promoting an increase of DC abundance in vivo, by inducing DC development from DC progenitors in vitro and by generating stable DC lines. In the past years, we have described a method to derive immortalized stable DC lines, named MutuDCs, from the spleens of Mushi1 mice, a transgenic mouse strain that express the simian virus 40 Large T-oncogene in the DCs. The comparison of these DC lines with the vast variety of DC subsets described in vivo has shown that all the MutuDC lines that we have generated so far have phenotypic and functional features of type 1 conventional DCs (cDC1s). With the purpose of deriving DC lines with characteristics of type 2 conventional DCs (cDC2s), we bred a new Batf3 <sup>-/-</sup> Mushi1 murine line in which the development of the cDC1 subset is severely defective. The new MutuDC line that we generated from Batf3 <sup>-/-</sup> Mushi1 mice was phenotypically and functionally characterized in this work. Our results demonstrated that all the tested characteristics of this new cell line, including the expression of subset-determining transcription factors, the profile of cytokine production and the ability to present antigens, are comparable with the features of splenic CD4 <sup>-</sup> cDC2s. Therefore, we concluded that our new cell line, that we named CD4 <sup>-</sup> MutuDC2 line, represents a valuable model for the CD4 <sup>-</sup> cDC2 subset
Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum.
Autosomal recessive hereditary spastic paraplegia (ARHSP) with thin corpus
callosum (TCC) is a common and clinically distinct form of familial spastic
paraplegia that is linked to the SPG11 locus on chromosome 15 in most affected
families. We analyzed 12 ARHSP-TCC families, refined the SPG11 candidate interval
and identified ten mutations in a previously unidentified gene expressed
ubiquitously in the nervous system but most prominently in the cerebellum,
cerebral cortex, hippocampus and pineal gland. The mutations were either nonsense
or insertions and deletions leading to a frameshift, suggesting a
loss-of-function mechanism. The identification of the function of the gene will
provide insight into the mechanisms leading to the degeneration of the
corticospinal tract and other brain structures in this frequent form of ARHSP
Cellular responses of Candida albicans to phagocytosis and the extracellular activities of neutrophils are critical to counteract carbohydrate starvation, oxidative and nitrosative stress
Acknowledgments We thank Alexander Johnson (yhb1D/D), Karl Kuchler (sodD/D mutants), Janet Quinn (hog1D/D, hog1/cap1D/D, trx1D/D) and Peter Staib (ssu1D/D) for providing mutant strains. We acknowledge helpful discussions with our colleagues from the Microbial Pathogenicity Mechanisms Department, Fungal Septomics and the Microbial Biochemistry and Physiology Research Group at the Hans Knošll Institute (HKI), specially Ilse D. Jacobsen, Duncan Wilson, Sascha Brunke, Lydia Kasper, Franziska Gerwien, SeaŽna Duggan, Katrin Haupt, Kerstin Hušnniger, and Matthias Brock, as well as from our partners in the FINSysB Network. Author Contributions Conceived and designed the experiments: PM HW IMB AJPB OK BH. Performed the experiments: PM CD HW. Analyzed the data: PM HW IMB AJPB OK BH. Wrote the paper: PM HW OK AJPB BH.Peer reviewedPublisher PD
Clinical and genetic analysis of 29 Brazilian patients with Huntingtonâs disease-like phenotype
Huntingtonâs disease (HD) is a neurodegenerative disorder characterized by chorea,
behavioral disturbances and dementia, caused by a pathological expansion of the CAG
trinucleotide in the HTT gene. Several patients have been recognized with the typical HD
phenotype without the expected mutation. The objective of this study was to assess the
occurrence of diseases such as Huntingtonâs disease-like 2 (HDL2), spinocerebellar ataxia
(SCA) 1, SCA2, SCA3, SCA7, dentatorubral-pallidoluysian atrophy (DRPLA) and choreaacanthocytosis
(ChAc) among 29 Brazilian patients with a HD-like phenotype. In the group
analyzed, we found 3 patients with HDL2 and 2 patients with ChAc. The diagnosis was not
reached in 79.3% of the patients. HDL2 was the main cause of the HD-like phenotype in
the group analyzed, and is attributable to the African ancestry of this population. However,
the etiology of the disease remains undetermined in the majority of the HD negative
patients with HD-like phenotype.
Key words: Huntingtonâs disease, Huntingtonâs disease-like, chorea-acanthocytosis,
Huntingtonâs disease-like 2
CAG Repeats Determine Brain Atrophy in Spinocerebellar Ataxia 17: A VBM Study
Abnormal repeat length has been associated with an earlier age of onset and more severe disease progression in the rare neurodegenerative disorder spinocerebellar ataxia 17 (SCA17).To determine whether specific structural brain degeneration and rate of disease progression in SCA17 might be associated with the CAG repeat size, observer-independent voxel-based morphometry was applied to high-resolution magnetic resonance images of 16 patients with SCA17 and 16 age-matched healthy controls. The main finding contrasting SCA17 patients with healthy controls demonstrated atrophy in the cerebellum bilaterally. Multiple regression analyses with available genetic data and also post-hoc correlations revealed an inverse relationship again with cerebellar atrophy. Moreover, we found an inverse relationship between the CAG repeat length and rate of disease progression.Our results highlight the fundamental role of the cerebellum in this neurodegenerative disease and support the genotype-phenotype relationship in SCA17 patients. Genetic factors may determine individual susceptibility to neurodegeneration and rate of disease progression
Defects in the CAPN1 Gene Result in Alterations in Cerebellar Development and Cerebellar Ataxia in Mice and Humans
A CAPN1 missense mutation in Parson Russell Terrier dogs is associated with spinocerebellar ataxia. We now report that homozygous or heterozygous CAPN1-null mutations in humans result in cerebellar ataxia and limb spasticity in four independent pedigrees. Calpain-1 knockout (KO) mice also exhibit a mild form of ataxia due to abnormal cerebellar development, including enhanced neuronal apoptosis, decreased number of cerebellar granule cells, and altered synaptic transmission. Enhanced apoptosis is due to absence of calpain-1-mediated cleavage of PH domain and leucine-rich repeat protein phosphatase 1 (PHLPP1), which results in inhibition of the Akt pro-survival pathway in developing granule cells. Injection of neonatal mice with the indirect Akt activator, bisperoxovanadium, or crossing calpain-1 KO mice with PHLPP1 KO mice prevented increased postnatal cerebellar granule cell apoptosis and restored granule cell density and motor coordination in adult mice. Thus, mutations in CAPN1 are an additional cause of ataxia in mammals, including humans
A Genome-Scale DNA Repair RNAi Screen Identifies SPG48 as a Novel Gene Associated with Hereditary Spastic Paraplegia
We have identified a novel gene in a genome-wide, double-strand break DNA repair RNAi screen and show that is involved in the neurological disease hereditary spastic paraplegia
- âŠ