131 research outputs found

    IL-17 Expression in the Time Course of Acute Anti-Thy1 Glomerulonephritis

    Get PDF
    Background Interleukin-17 (IL-17) is a new pro-inflammatory cytokine involved in immune response and inflammatory disease. The main source of IL-17 is a subset of CD4+ T-helper cells, but is also secreted by non-immune cells. The present study analyzes expression of IL-17 in the time course of acute anti- thy1 glomerulonephritis and the role of IL-17 as a potential link between inflammation and fibrosis. Methods Anti-thy1 glomerulonephritis was induced into male Wistar rats by OX-7 antibody injection. After that, samples were taken on days 1, 5, 10 (matrix expansion phase), 15 and 20 (resolution phase). PBS-injected animals served as controls. Proteinuria and histological matrixes score served as the main markers for disease severity. In in vitro experiments, NRK-52E cells were used. For cytokine expressions, mRNA and protein levels were analyzed by utilizing RT-PCR, in situ hybridization and immunofluorescence. Results Highest IL-17 mRNA-expression (6.50-fold vs. con; p<0.05) was found on day 5 after induction of anti-thy1 glomerulonephritis along the maximum levels of proteinuria (113 ± 13 mg/d; p<0.001), histological glomerular-matrix accumulation (82%; p<0.001) and TGF-β1 (2.2-fold; p<0.05), IL-6 mRNA expression (36-fold; p<0.05). IL-17 protein expression co-localized with the endothelial cell marker PECAM in immunofluorescence. In NRK-52E cells, co-administration of TGF-β1 and IL-6 synergistically up-regulated IL-17 mRNA 4986-fold (p<0.001). Conclusions The pro-inflammatory cytokine IL-17 is up-regulated in endothelial cells during the time course of acute anti-thy1 glomerulonephritis. In vitro, NRK-52E cells secrete IL-17 under pro-fibrotic and pro-inflammatory conditions

    Die Flora des Rothliegenden im nordwestlichen Sachsen

    No full text

    Presentation of uncertainties on web platforms for climate change information

    Get PDF
    Adaptation to climate change is gaining attention and is very challenging because it requires action at a local scale in response to global problems. At the same time, spatial and temporal uncertainty about climate impacts and effects of adaptation projects is large. Data on climate impacts and adaptation is collected and presented in web-based platforms such as ci:grasp, which is unique in its structuredness and by explicitly linking adaptation projects to the addressed climate impacts. The challenge to find an adequate and readable representation of uncertainty in this context is large and research is just in the initial phase to provide solutions to the problem. Our goal is to present the structure required to address spatial and temporal uncertainty within ci:grasp. We compare existing concepts and representations for uncertainty communication with current practices on web-based platforms. From our review we derive an uncertainty framework for climate information going beyond what is currently present in the web. We make use of a multi-step approach in communicating the uncertainty and a typology of uncertainty distinguishing between epistemic, natural stochastic, and human reflexive uncertainty. While our suggestions are a step forward, much remains to be done
    corecore