4,222 research outputs found
Trace formulas for stochastic evolution operators: Smooth conjugation method
The trace formula for the evolution operator associated with nonlinear
stochastic flows with weak additive noise is cast in the path integral
formalism. We integrate over the neighborhood of a given saddlepoint exactly by
means of a smooth conjugacy, a locally analytic nonlinear change of field
variables. The perturbative corrections are transfered to the corresponding
Jacobian, which we expand in terms of the conjugating function, rather than the
action used in defining the path integral. The new perturbative expansion which
follows by a recursive evaluation of derivatives appears more compact than the
standard Feynman diagram perturbation theory. The result is a stochastic analog
of the Gutzwiller trace formula with the ``hbar'' corrections computed an order
higher than what has so far been attainable in stochastic and
quantum-mechanical applications.Comment: 16 pages, 1 figure, New techniques and results for a problem we
considered in chao-dyn/980703
The Case for Dynamic Models of Learners' Ontologies in Physics
In a series of well-known papers, Chi and Slotta (Chi, 1992; Chi & Slotta,
1993; Chi, Slotta & de Leeuw, 1994; Slotta, Chi & Joram, 1995; Chi, 2005;
Slotta & Chi, 2006) have contended that a reason for students' difficulties in
learning physics is that they think about concepts as things rather than as
processes, and that there is a significant barrier between these two
ontological categories. We contest this view, arguing that expert and novice
reasoning often and productively traverses ontological categories. We cite
examples from everyday, classroom, and professional contexts to illustrate
this. We agree with Chi and Slotta that instruction should attend to learners'
ontologies; but we find these ontologies are better understood as dynamic and
context-dependent, rather than as static constraints. To promote one
ontological description in physics instruction, as suggested by Slotta and Chi,
could undermine novices' access to productive cognitive resources they bring to
their studies and inhibit their transition to the dynamic ontological
flexibility required of experts.Comment: The Journal of the Learning Sciences (In Press
Mid-Infrared Diagnostics of LINERs
We report results from the first mid-infrared spectroscopic study of a
comprehensive sample of 33 LINERs, observed with the Spitzer Space Telescope.
We compare the properties of two different LINER populations: infrared-faint
LINERs, with LINER emission arising mostly in compact nuclear regions, and
infrared-luminous LINERs, which often show spatially extended (non-AGN) LINER
emission. We show that these two populations can be easily distinguished by
their mid-infrared spectra in three different ways: (i) their mid-IR spectral
energy distributions (SEDs), (ii) the emission features of polycyclic aromatic
hydrocarbons (PAHs), and (iii) various combinations of IR fine-structure line
ratios. IR-luminous LINERs show mid-IR SEDs typical of starburst galaxies,
while the mid-IR SEDs of IR-faint LINERs are much bluer. PAH flux ratios are
significantly different in the two groups. Fine structure emission lines from
highly excited gas, such as [O IV], are detected in both populations,
suggesting the presence of an additional AGN also in a large fraction of
IR-bright LINERs, which contributes little to the combined mid-IR light. The
two LINER groups occupy different regions of mid-infrared emission-line
excitation diagrams. The positions of the various LINER types in our diagnostic
diagrams provide important clues regarding the power source of each LINER type.
Most of these mid-infrared diagnostics can be applied at low spectral
resolution, making AGN- and starburst-excited LINERs distinguishable also at
high redshifts.Comment: 11 pages, including 2 eps figures, accepted for publication in ApJ
Phase transition curves for mesoscopic superconducting samples
We compute the phase transition curves for mesoscopic superconductors.
Special emphasis is given to the limiting shape of the curve when the magnetic
flux is large. We derive an asymptotic formula for the ground state of the
Schr\"odinger equation in the presence of large applied flux. The expansion is
shown to be sensitive to the smoothness of the domain. The theoretical results
are compared to recent experiments.Comment: 8 pages, 1 figur
Deriving a multivariate CO-to-H conversion function using the [CII]/CO(1-0) ratio and its application to molecular gas scaling relations
We present Herschel PACS observations of the [CII] 158 micron emission line
in a sample of 24 intermediate mass (9<logM/M<10) and low
metallicity (0.4< Z/Z<1.0) galaxies from the xCOLD GASS survey.
Combining them with IRAM CO(1-0) measurements, we establish scaling relations
between integrated and molecular region [CII]/CO(1-0) luminosity ratios as a
function of integrated galaxy properties. A Bayesian analysis reveals that only
two parameters, metallicity and offset from the star formation main sequence,
MS, are needed to quantify variations in the luminosity ratio;
metallicity describes the total dust content available to shield CO from UV
radiation, while MS describes the strength of this radiation field. We
connect the [CII]/CO luminosity ratio to the CO-to-H conversion factor and
find a multivariate conversion function , which can be used up to
z~2.5. This function depends primarily on metallicity, with a second order
dependence on MS. We apply this to the full xCOLD GASS and PHIBSS1
surveys and investigate molecular gas scaling relations. We find a flattening
of the relation between gas mass fraction and stellar mass at
logM/M<10. While the molecular gas depletion time varies with
sSFR, it is mostly independent of mass, indicating that the low L/SFR
ratios long observed in low mass galaxies are entirely due to photodissociation
of CO, and not to an enhanced star formation efficiency.Comment: Submitted to MNRAS, this version after referee comments. 21 page
Gravitational Ionization: A Chaotic Net in the Kepler System
The long term nonlinear dynamics of a Keplerian binary system under the
combined influences of gravitational radiation damping and external tidal
perturbations is analyzed. Gravitational radiation reaction leads the binary
system towards eventual collapse, while the external periodic perturbations
could lead to the ionization of the system via Arnold diffusion. When these two
opposing tendencies nearly balance each other, interesting chaotic behavior
occurs that is briefly studied in this paper. It is possible to show that
periodic orbits can exist in this system for sufficiently small damping.
Moreover, we employ the method of averaging to investigate the phenomenon of
capture into resonance.Comment: REVTEX Style, Submitte
The photometric properties of a vast stellar substructure in the outskirts of M33
We have surveyed sq.degrees surrounding M33 with CFHT MegaCam in the
g and i filters, as part of the Pan-Andromeda Archaeological Survey. Our
observations are deep enough to resolve the top 4mags of the red giant branch
population in this galaxy. We have previously shown that the disk of M33 is
surrounded by a large, irregular, low-surface brightness substructure. Here, we
quantify the stellar populations and structure of this feature using the PAndAS
data. We show that the stellar populations of this feature are consistent with
an old population with dex and an interquartile range in
metallicity of dex. We construct a surface brightness map of M33 that
traces this feature to mags\,arcsec. At these low surface
brightness levels, the structure extends to projected radii of kpc from
the center of M33 in both the north-west and south-east quadrants of the
galaxy. Overall, the structure has an "S-shaped" appearance that broadly aligns
with the orientation of the HI disk warp. We calculate a lower limit to the
integrated luminosity of the structure of mags, comparable to a
bright dwarf galaxy such as Fornax or AndII and slightly less than $1\$ of the
total luminosity of M33. Further, we show that there is tentative evidence for
a distortion in the distribution of young stars near the edge of the HI disk
that occurs at similar azimuth to the warp in HI. The data also hint at a
low-level, extended stellar component at larger radius that may be a M33 halo
component. We revisit studies of M33 and its stellar populations in light of
these new results, and we discuss possible formation scenarios for the vast
stellar structure. Our favored model is that of the tidal disruption of M33 in
its orbit around M31.Comment: Accepted for publication in ApJ. 17 figures. ApJ preprint forma
The impacts of environmental warming on Odonata: a review
Climate change brings with it unprecedented rates of increase in environmental temperature, which will have major consequences for the earth's flora and fauna. The Odonata represent a taxon that has many strong links to this abiotic factor due to its tropical evolutionary history and adaptations to temperate climates. Temperature is known to affect odonate physiology including life-history traits such as developmental rate, phenology and seasonal regulation as well as immune function and the production of pigment for thermoregulation. A range of behaviours are likely to be affected which will, in turn, influence other parts of the aquatic ecosystem, primarily through trophic interactions. Temperature may influence changes in geographical distributions, through a shifting of species' fundamental niches, changes in the distribution of suitable habitat and variation in the dispersal ability of species. Finally, such a rapid change in the environment results in a strong selective pressure towards adaptation to cope and the inevitable loss of some populations and, potentially, species. Where data are lacking for odonates, studies on other invertebrate groups will be considered. Finally, directions for research are suggested, particularly laboratory studies that investigate underlying causes of climate-driven macroecological patterns
A search for broad infrared recombination lines in NGC 1068
We report infrared spectroscopy of the prototypical Seyfert 2 galaxy NGC
1068, aiming at detection of broad components of hydrogen recombination lines
that originate in the obscured broad-line region. Using the Short Wavelength
Spectrometer on board the Infrared Space Observatory, we have observed for the
first time the regions of Brackett beta 2.626um and Pfund alpha 7.460um, and
present improved data for Brackett alpha 4.052um. No significant broad
components are detected, implying an equivalent visual extinction to the
broad-line region of at least 50 magnitudes and an obscuring column density of
at least 10^23 cm^-2. While consistent with a highly obscured broad-line
region, as required by the classical unified scenario, these limits are not yet
significant enough to discriminate strongly between different torus models or
to constrain properties of the gas causing the very large X-ray obscuration. We
discuss the systematic limitations of infrared broad-line region searches and
suggest that Brackett alpha may often be the most favorable transition for
future searches.Comment: aastex (V4), 4 eps figures. Accepted by Ap
- …