496 research outputs found

    SUq(2)SU_q(2) Lattice Gauge Theory

    Get PDF
    We reformulate the Hamiltonian approach to lattice gauge theories such that, at the classical level, the gauge group does not act canonically, but instead as a Poisson-Lie group. At the quantum level, it then gets promoted to a quantum group gauge symmetry. The theory depends on two parameters - the deformation parameter λ\lambda and the lattice spacing aa. We show that the system of Kogut and Susskind is recovered when λ→0\lambda \rightarrow 0, while QCD is recovered in the continuum limit (for any λ\lambda). We thus have the possibility of having a two parameter regularization of QCD.Comment: 26 pages, LATEX fil

    Overview of the New Horizons Science Payload

    Full text link
    The New Horizons mission was launched on 2006 January 19, and the spacecraft is heading for a flyby encounter with the Pluto system in the summer of 2015. The challenges associated with sending a spacecraft to Pluto in less than 10 years and performing an ambitious suite of scientific investigations at such large heliocentric distances (> 32 AU) are formidable and required the development of lightweight, low power, and highly sensitive instruments. This paper provides an overview of the New Horizons science payload, which is comprised of seven instruments. Alice provides spatially resolved ultraviolet spectroscopy. The Ralph instrument has two components: the Multicolor Visible Imaging Camera (MVIC), which performs panchromatic and color imaging, and the Linear Etalon Imaging Spectral Array (LEISA), which provides near-infrared spectroscopic mapping capabilities. The Radio Experiment (REX) is a component of the New Horizons telecommunications system that provides both occultation and radiometry capabilities. The Long Range Reconnaissance Imager (LORRI) provides high sensitivity, high spatial resolution optical imaging capabilities. The Solar Wind at Pluto (SWAP) instrument measures the density and speed of solar wind particles. The Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) measures energetic protons and CNO ions. The Venetia Burney Student Dust Counter (VB-SDC) is used to record dust particle impacts during the cruise phases of the mission.Comment: 17 pages, 4 figures, 1 table; To appear in a special volume of Space Science Reviews on the New Horizons missio

    Conditions for Adiabatic Spin Transport in Disordered Systems

    Get PDF
    We address the controversy concerning the necessary conditions for the observation of Berry phases in disordered mesoscopic conductors. For this purpose we calculate the spin-dependent conductance of disordered two-dimensional structures in the presence of inhomogeneous magnetic fields. Our numerical results show that for both, the overall conductance and quantum corrections, the relevant parameter defining adiabatic spin transport scales with the square root of the number of scattering events, in generalization of Stern's original proposal [Phys. Rev. Lett. 68, 1022 (1992)]. This could hinder a clear-cut experimental observation of Berry phase effects in diffusive metallic rings.Comment: 5 pages, 4 figures. To appear in Phys. Rev. B (Rapid Communications

    Collisional Velocities and Rates in Resonant Planetesimal Belts

    Full text link
    We consider a belt of small bodies around a star, captured in one of the external or 1:1 mean-motion resonances with a massive perturber. The objects in the belt collide with each other. Combining methods of celestial mechanics and statistical physics, we calculate mean collisional velocities and collisional rates, averaged over the belt. The results are compared to collisional velocities and rates in a similar, but non-resonant belt, as predicted by the particle-in-a-box method. It is found that the effect of the resonant lock on the velocities is rather small, while on the rates more substantial. The collisional rates between objects in an external resonance are by about a factor of two higher than those in a similar belt of objects not locked in a resonance. For Trojans under the same conditions, the collisional rates may be enhanced by up to an order of magnitude. Our results imply, in particular, shorter collisional lifetimes of resonant Kuiper belt objects in the solar system and higher efficiency of dust production by resonant planetesimals in debris disks around other stars.Comment: 31 pages, 11 figures (some of them heavily compressed to fit into arxiv-maximum filesize), accepted for publication at "Celestial Mechanics and Dynamical Astronomy

    Effects of Electron-Electron and Electron-Phonon Interactions in Weakly Disordered Conductors and Heterostuctures

    Full text link
    We investigate quantum corrections to the conductivity due to the interference of electron-electron (electron-phonon) scattering and elastic electron scattering in weakly disordered conductors. The electron-electron interaction results in a negative T2ln⁥TT^2 \ln T-correction in a 3D conductor. In a quasi-two-dimensional conductor, d<vF/Td < v_F/T (dd is the thickness, vFv_F is the Fermi velocity), with 3D electron spectrum this correction is linear in temperature and differs from that for 2D electrons (G. Zala et. al., Phys. Rev.B {\bf 64}, 214204 (2001)) by a numerical factor. In a quasi-one-dimensional conductor, temperature-dependent correction is proportional to T2T^2. The electron interaction via exchange of virtual phonons also gives T2T^2-correction. The contribution of thermal phonons interacting with electrons via the screened deformation potential results in T4T^4-term and via unscreened deformation potential results in T2T^2-term. The interference contributions dominate over pure electron-phonon scattering in a wide temperature range, which extends with increasing disorder.Comment: 6 pages, 2figure

    Metallicity and its low temperature behavior in dilute 2D carrier systems

    Full text link
    We theoretically consider the temperature and density dependent transport properties of semiconductor-based 2D carrier systems within the RPA-Boltzmann transport theory, taking into account realistic screened charged impurity scattering in the semiconductor. We derive a leading behavior in the transport property, which is exact in the strict 2D approximation and provides a zeroth order explanation for the strength of metallicity in various 2D carrier systems. By carefully comparing the calculated full nonlinear temperature dependence of electronic resistivity at low temperatures with the corresponding asymptotic analytic form obtained in the T/TF→0T/T_F \to 0 limit, both within the RPA screened charged impurity scattering theory, we critically discuss the applicability of the linear temperature dependent correction to the low temperature resistivity in 2D semiconductor structures. We find quite generally that for charged ionized impurity scattering screened by the electronic dielectric function (within RPA or its suitable generalizations including local field corrections), the resistivity obeys the asymptotic linear form only in the extreme low temperature limit of T/TF≀0.05T/T_F \le 0.05. We point out the experimental implications of our findings and discuss in the context of the screening theory the relative strengths of metallicity in different 2D systems.Comment: We have substantially revised this paper by adding new materials and figures including a detailed comparison to a recent experimen

    Cosmic Chronometers: Constraining the Equation of State of Dark Energy. I: H(z) Measurements

    Get PDF
    We present new determinations of the cosmic expansion history from red-envelope galaxies. We have obtained for this purpose high-quality spectra with the Keck-LRIS spectrograph of red-envelope galaxies in 24 galaxy clusters in the redshift range 0.2 < z < 1.0. We complement these Keck spectra with high-quality, publicly available archival spectra from the SPICES and VVDS surveys. We improve over our previous expansion history measurements in Simon et al. (2005) by providing two new determinations of the expansion history: H(z) = 97 +- 62 km/sec/Mpc at z = 0.5 and H(z) = 90 +- 40 km/sec/Mpc at z = 0.8. We discuss the uncertainty in the expansion history determination that arises from uncertainties in the synthetic stellar-population models. We then use these new measurements in concert with cosmic-microwave-background (CMB) measurements to constrain cosmological parameters, with a special emphasis on dark-energy parameters and constraints to the curvature. In particular, we demonstrate the usefulness of direct H(z) measurements by constraining the dark- energy equation of state parameterized by w0 and wa and allowing for arbitrary curvature. Further, we also constrain, using only CMB and H(z) data, the number of relativistic degrees of freedom to be 4 +- 0.5 and their total mass to be < 0.2 eV, both at 1-sigma.Comment: Submitted to JCA

    The staggered domain wall fermion method

    Get PDF
    A different lattice fermion method is introduced. Staggered domain wall fermions are defined in 2n+1 dimensions and describe 2^n flavors of light lattice fermions with exact U(1) x U(1) chiral symmetry in 2n dimensions. As the size of the extra dimension becomes large, 2^n chiral flavors with the same chiral charge are expected to be localized on each boundary and the full SU(2^n) x SU(2^n) flavor chiral symmetry is expected to be recovered. SDWF give a different perspective into the inherent flavor mixing of lattice fermions and by design present an advantage for numerical simulations of lattice QCD thermodynamics. The chiral and topological index properties of the SDWF Dirac operator are investigated. And, there is a surprise ending...Comment: revtex4, 7 figures, minor revisions, 2 references adde

    Interaction Corrections to Two-Dimensional Hole Transport in Large rsr_{s} Limit

    Full text link
    The metallic conductivity of dilute two-dimensional holes in a GaAs HIGFET (Heterojunction Insulated-Gate Field-Effect Transistor) with extremely high mobility and large rsr_{s} is found to have a linear dependence on temperature, consistent with the theory of interaction corrections in the ballistic regime. Phonon scattering contributions are negligible in the temperature range of our interest, allowing comparison between our measured data and theory without any phonon subtraction. The magnitude of the Fermi liquid interaction parameter F0σF_{0}^{\sigma} determined from the experiment, however, decreases with increasing rsr_{s} for r_{s}\agt22, a behavior unexpected from existing theoretical calculations valid for small rsr_{s}.Comment: 6 pages, 4 figure

    Aharonov-Bohm Physics with Spin II: Spin-Flip Effects in Two-dimensional Ballistic Systems

    Get PDF
    We study spin effects in the magneto-conductance of ballistic mesoscopic systems subject to inhomogeneous magnetic fields. We present a numerical approach to the spin-dependent Landauer conductance which generalizes recursive Green function techniques to the case with spin. Based on this method we address spin-flip effects in quantum transport of spin-polarized and -unpolarized electrons through quantum wires and various two-dimensional Aharonov-Bohm geometries. In particular, we investigate the range of validity of a spin switch mechanism recently found which allows for controlling spins indirectly via Aharonov-Bohm fluxes. Our numerical results are compared to a transfer-matrix model for one-dimensional ring structures presented in the first paper (Hentschel et al., submitted to Phys. Rev. B) of this series.Comment: 29 pages, 15 figures. Second part of a series of two article
    • 

    corecore