258 research outputs found
Biofluorescence in Catsharks (Scyliorhinidae): Fundamental description and relevance for elasmobranch visual ecology
Biofluorescence has recently been found to be widespread in marine fishes, including sharks. Catsharks, such as the Swell Shark (Cephaloscyllium ventriosum) from the eastern Pacific and the Chain Catshark (Scyliorhinus retifer) from the western Atlantic, are known to exhibit bright green fluorescence. We examined the spectral sensitivity and visual characteristics of these reclusive sharks, while also considering the fluorescent properties of their skin. Spectral absorbance of the photoreceptor cells in these sharks revealed the presence of a single visual pigment in each species. Cephaloscyllium ventriosum exhibited a maximum absorbance of 484 +/- 3 nm and an absorbance range at half maximum (lambda(1/2max)) of 440-540 nm, whereas for S. retifer maximum absorbance was 488 +/- 3 nm with the same absorbance range. Using the photoreceptor properties derived here, a "shark eye" camera was designed and developed that yielded contrast information on areas where fluorescence is anatomically distributed on the shark, as seen from other sharks' eyes of these two species. Phylogenetic investigations indicate that biofluorescence has evolved at least three times in cartilaginous fishes. The repeated evolution of biofluorescence in elasmobranchs, coupled with a visual adaptation to detect it; and evidence that biofluorescence creates greater luminosity contrast with the surrounding background, highlights the potential importance of biofluorescence in elasmobranch behavior and biology
Metallicity and its low temperature behavior in dilute 2D carrier systems
We theoretically consider the temperature and density dependent transport
properties of semiconductor-based 2D carrier systems within the RPA-Boltzmann
transport theory, taking into account realistic screened charged impurity
scattering in the semiconductor. We derive a leading behavior in the transport
property, which is exact in the strict 2D approximation and provides a zeroth
order explanation for the strength of metallicity in various 2D carrier
systems. By carefully comparing the calculated full nonlinear temperature
dependence of electronic resistivity at low temperatures with the corresponding
asymptotic analytic form obtained in the limit, both within the
RPA screened charged impurity scattering theory, we critically discuss the
applicability of the linear temperature dependent correction to the low
temperature resistivity in 2D semiconductor structures. We find quite generally
that for charged ionized impurity scattering screened by the electronic
dielectric function (within RPA or its suitable generalizations including local
field corrections), the resistivity obeys the asymptotic linear form only in
the extreme low temperature limit of . We point out the
experimental implications of our findings and discuss in the context of the
screening theory the relative strengths of metallicity in different 2D systems.Comment: We have substantially revised this paper by adding new materials and
figures including a detailed comparison to a recent experimen
Synthesizing diverse evidence: the use of primary qualitative data analysis methods and logic models in public health reviews
Objectives: The nature of public health evidence presents challenges for conventional systematic review processes, with increasing recognition of the need to include a broader range of work including observational studies and qualitative research, yet with methods to combine diverse sources remaining underdeveloped. The objective of this paper is to report the application of a new approach for review of evidence in the public health sphere. The method enables a diverse range of evidence types to be synthesized in order to examine potential relationships between a public health environment and outcomes.
Study design: The study drew on previous work by the National Institute for Health and Clinical Excellence on conceptual frameworks. It applied and further extended this work to the synthesis of evidence relating to one particular public health area: the enhancement of employee mental well-being in the workplace.
Methods: The approach utilized thematic analysis techniques from primary research, together with conceptual modelling, to explore potential relationships between factors and outcomes.
Results: The method enabled a logic framework to be built from a diverse document set that illustrates how elements and associations between elements may impact on the well-being of employees.
Conclusions: Whilst recognizing potential criticisms of the approach, it is suggested that logic models can be a useful way of examining the complexity of relationships between factors and outcomes in public health, and of highlighting potential areas for interventions and further research. The use of techniques from primary qualitative research may also be helpful in synthesizing diverse document types. (C) 2010 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved
The relative importance of electron-electron interactions compared to disorder in the two-dimensional "metallic" state
The effect of substrate bias and surface gate voltage on the low temperature
resistivity of a Si-MOSFET is studied for electron concentrations where the
resistivity increases with increasing temperature. This technique offers two
degrees of freedom for controlling the electron concentration and the device
mobility, thereby providing a means to evaluate the relative importance of
electron-electron interactions and disorder in this so-called ``metallic''
regime. For temperatures well below the Fermi temperature, the data obey a
scaling law where the disorder parameter (), and not the
concentration, appears explicitly. This suggests that interactions, although
present, do not alter the Fermi-liquid properties of the system fundamentally.
Furthermore, this experimental observation is reproduced in results of
calculations based on temperature-dependent screening, in the context of
Drude-Boltzmann theory.Comment: 5 pages, 6 figure
Magnetization of a two-dimensional electron gas with a second filled subband
We have measured the magnetization of a dual-subband two-dimensional electron
gas, confined in a GaAs/AlGaAs heterojunction. In contrast to two-dimensional
electron gases with a single subband, we observe non-1/B-periodic, triangularly
shaped oscillations of the magnetization with an amplitude significantly less
than per electron. All three effects are explained by a
field dependent self-consistent model, demonstrating the shape of the
magnetization is dominated by oscillations in the confining potential.
Additionally, at 1 K, we observe small oscillations at magnetic fields where
Landau-levels of the two different subbands cross.Comment: 4 pages, 4 figure
Quantum Hall effect in single wide quantum wells
We study the quantum Hall states in the lowest Landau level for a single wide
quantum well. Due to a separation of charges to opposite sides of the well, a
single wide well can be modelled as an effective two level system. We provide
numerical evidence of the existence of a phase transition from an
incompressible to a compressible state as the electron density is increased for
specific well width. Our numerical results show a critical electron density
which depends on well width, beyond which a transition incompressible double
layer quantum Hall state to a mono-layer compressible state occurs. We also
calculate the related phase boundary corresponding to destruction of the
collective mode energy gap. We show that the effective tunneling term and the
interlayer separation are both renormalised by the strong magnetic field. We
also exploite the local density functional techniques in the presence of strong
magnetic field at to calculate renormalized . The
numerical results shows good agreement between many-body calculations and local
density functional techniques in the presence of a strong magnetic field at
. we also discuss implications of this work on the
incompressible state observed in SWQW.Comment: 30 pages, 7 figures (figures are not included
Double-Layer Systems at Zero Magnetic Field
We investigate theoretically the effects of intralayer and interlayer
exchange in biased double-layer electron and hole systems, in the absence of a
magnetic field. We use a variational Hartree-Fock-like approximation to analyze
the effects of layer separation, layer density, tunneling, and applied gate
voltages on the layer densities and on interlayer phase coherence. In agreement
with earlier work, we find that for very small layer separations and low layer
densities, an interlayer-correlated ground state possessing spontaneous
interlayer coherence (SILC) is obtained, even in the absence of interlayer
tunneling. In contrast to earlier work, we find that as a function of total
density, there exist four, rather than three, distinct noncrystalline phases
for balanced double-layer systems without interlayer tunneling. The newly
identified phase exists for a narrow range of densities and has three
components and slightly unequal layer densities, with one layer being spin
polarized, and the other unpolarized. An additional two-component phase is also
possible in the presence of sufficiently strong bias or tunneling. The
lowest-density SILC phase is the fully spin- and pseudospin-polarized
``one-component'' phase discussed by Zheng {\it et al.} [Phys. Rev. B {\bf 55},
4506 (1997)]. We argue that this phase will produce a finite interlayer Coulomb
drag at zero temperature due to the SILC. We calculate the particle densities
in each layer as a function of the gate voltage and total particle density, and
find that interlayer exchange can reduce or prevent abrupt transfers of charge
between the two layers. We also calculate the effect of interlayer exchange on
the interlayer capacitance.Comment: 35 pages, 19 figures included. To appear in PR
Behaviour of the topological susceptibility in two colour QCD across the finite density transition
The behaviour of the topological susceptibility \chi in QCD with two colours
and 8 flavours of quarks is studied at nonzero temperature on the lattice
across the finite density transition. It is shown that the signal of \chi drops
abruptly at a critical chemical potential \mu_c, much as it happens at the
finite temperature and zero density transition. The Polyakov loop and the
chiral condensate undergo their transitions at the same critical value \mu_c.
At a value \mu_s of the chemical potential, called saturation point, which in
our case satisfies \mu_s > \mu_c, Pauli blocking supervenes and consequently
the theory becomes quenched.Comment: Latex file, 28 pages, 6 Figures, revised version with further study
of Pauli blocking, phase diagram, physical units and the HMD algorithm. A few
misprints corrected. Some references adde
Phase separation in the two-dimensional electron liquid in MOSFETs
We show that the existence of an intermediate phase between the Fermi liquid
and the Wigner crystal phases is a generic property of the two-dimensional pure
electron liqd in MOSFET's at zero temperature. The physical reason for the
existence of these phases is a partial separation of the uniform phases.
We discuss properties of these phases and a possible explanation of
experimental results on transport properties of low density electron gas in Si
MOSFET's. We also argue that in certain range of parameters the partial phase
separation corresponds to a supersolid phas e discussed in [AndreevLifshitz].Comment: 11 pages, 3 figure
Modelling spectral and timing properties of accreting black holes: the hybrid hot flow paradigm
The general picture that emerged by the end of 1990s from a large set of
optical and X-ray, spectral and timing data was that the X-rays are produced in
the innermost hot part of the accretion flow, while the optical/infrared (OIR)
emission is mainly produced by the irradiated outer thin accretion disc. Recent
multiwavelength observations of Galactic black hole transients show that the
situation is not so simple. Fast variability in the OIR band, OIR excesses
above the thermal emission and a complicated interplay between the X-ray and
the OIR light curves imply that the OIR emitting region is much more compact.
One of the popular hypotheses is that the jet contributes to the OIR emission
and even is responsible for the bulk of the X-rays. However, this scenario is
largely ad hoc and is in contradiction with many previously established facts.
Alternatively, the hot accretion flow, known to be consistent with the X-ray
spectral and timing data, is also a viable candidate to produce the OIR
radiation. The hot-flow scenario naturally explains the power-law like OIR
spectra, fast OIR variability and its complex relation to the X-rays if the hot
flow contains non-thermal electrons (even in energetically negligible
quantities), which are required by the presence of the MeV tail in Cyg X-1. The
presence of non-thermal electrons also lowers the equilibrium electron
temperature in the hot flow model to <100 keV, making it more consistent with
observations. Here we argue that any viable model should simultaneously explain
a large set of spectral and timing data and show that the hybrid
(thermal/non-thermal) hot flow model satisfies most of the constraints.Comment: 26 pages, 13 figures. To be published in the Space Science Reviews
and as hard cover in the Space Sciences Series of ISSI - The Physics of
Accretion on to Black Holes (Springer Publisher
- …