53 research outputs found

    Fatigue tests of axially loaded butt welds up to very high cycles

    Get PDF
    Fatigue strength curves that are established from fatigue tests provide a basis for the fatigue assessment applying nominal stress approach. In the codes valid for steel structures, like the EC 3, the fatigue strength curves for constant amplitude loading have a knee point in the transition region. The fatigue strength curve beyond this knee point is commonly assumed to be a horizontal asymptote. However, the behaviour of the fatigue strength curve in the area of very high cycles and more importantly the existence of an endurance limit are much discussed. In the case of welded joints the experimental data beyond 107 load cycles is limited due to the possibilities in testing. Testing techniques with high frequencies are necessary to obtain experimental data with very high cycles in a reasonable period of time. In this scope a testing device with approximately 390 Hz operates by alternating current magnets and using resonance amplification, which was developed by a third party. This testing device was investigated and advanced for the application of long term tests reaching 5·108 load cycles. Fatigue tests on axially loaded butt welds with constant amplitude loading are conducted in three test series until very high cycles. The fatigue tests include the area of high and very high cycles. The influence of test frequency and stress ratio is investigated

    Variational analysis of drifter positions and model outputs for the reconstruction of surface currents in the central Adriatic during fall 2002

    Get PDF
    Author Posting. © American Geophysical Union, 2008. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 113 (2008): C04004, doi:10.1029/2007JC004148.In this paper we present an application of a variational method for the reconstruction of the velocity field in a coastal flow in the central Adriatic Sea, using in situ data from surface drifters and outputs from the ROMS circulation model. The variational approach, previously developed and tested for mesoscale open ocean flows, has been improved and adapted to account for inhomogeneities on boundary current dynamics over complex bathymetry and coastline and for weak Lagrangian persistence in coastal flows. The velocity reconstruction is performed using nine drifter trajectories over 45 d, and a hierarchy of indirect tests is introduced to evaluate the results as the real ocean state is not known. For internal consistency and impact of the analysis, three diagnostics characterizing the particle prediction and transport, in terms of residence times in various zones and export rates from the boundary current toward the interior, show that the reconstruction is quite effective. A qualitative comparison with sea color data from the MODIS satellite images shows that the reconstruction significantly improves the description of the boundary current with respect to the ROMS model first guess, capturing its main features and its exchanges with the interior when sampled by the drifters.Four of the authors are supported by the Office of Naval Research, V.T. and A.G. under grants N00014-05-1-0094 and N00014-05-1-0095, P.M.P. under grant N00014-03-1-0291, and S.C. under grant N00014-05-1-0730. CNR-ISMAR activity was partially supported by P.O.R. ‘‘CAINO’’ (Regione Puglia), VECTOR (Italian MIUR) project, and ECOOP (EU project)
    • …
    corecore