146 research outputs found

    Planetary migration in evolving planetesimals discs

    Full text link
    In the current paper, we further improved the model for the migration of planets introduced in Del Popolo et al. (2001) and extended to time-dependent planetesimal accretion disks in Del Popolo and Eksi (2002). In the current study, the assumption of Del Popolo and Eksi (2002), that the surface density in planetesimals is proportional to that of gas, is released. In order to obtain the evolution of planetesimal density, we use a method developed in Stepinski and Valageas (1997) which is able to simultaneously follow the evolution of gas and solid particles for up to 10^7 yrs. Then, the disk model is coupled to migration model introduced in Del Popolo et al. (2001) in order to obtain the migration rate of the planet in the planetesimal. We find that the properties of solids known to exist in protoplanetary systems, together with reasonable density profiles for the disk, lead to a characteristic radius in the range 0.03-0.2 AU for the final semi-major axis of the giant planet.Comment: IJMP A in prin

    Protoplanetary Disk Turbulence Driven by the Streaming Instability: Non-Linear Saturation and Particle Concentration

    Get PDF
    We present simulations of the non-linear evolution of streaming instabilities in protoplanetary disks. The two components of the disk, gas treated with grid hydrodynamics and solids treated as superparticles, are mutually coupled by drag forces. We find that the initially laminar equilibrium flow spontaneously develops into turbulence in our unstratified local model. Marginally coupled solids (that couple to the gas on a Keplerian time-scale) trigger an upward cascade to large particle clumps with peak overdensities above 100. The clumps evolve dynamically by losing material downstream to the radial drift flow while receiving recycled material from upstream. Smaller, more tightly coupled solids produce weaker turbulence with more transient overdensities on smaller length scales. The net inward radial drift is decreased for marginally coupled particles, whereas the tightly coupled particles migrate faster in the saturated turbulent state. The turbulent diffusion of solid particles, measured by their random walk, depends strongly on their stopping time and on the solids-to-gas ratio of the background state, but diffusion is generally modest, particularly for tightly coupled solids. Angular momentum transport is too weak and of the wrong sign to influence stellar accretion. Self-gravity and collisions will be needed to determine the relevance of particle overdensities for planetesimal formation.Comment: Accepted for publication in ApJ (17 pages). Movies of the simulations can be downloaded at http://www.mpia.de/~johansen/research_en.ph

    Growth and migration of solids in evolving protostellar disks I: Methods and Analytical tests

    Full text link
    This series of papers investigates the early stages of planet formation by modeling the evolution of the gas and solid content of protostellar disks from the early T Tauri phase until complete dispersal of the gas. In this first paper, I present a new set of simplified equations modeling the growth and migration of various species of grains in a gaseous protostellar disk evolving as a result of the combined effects of viscous accretion and photo-evaporation from the central star. Using the assumption that the grain size distribution function always maintains a power-law structure approximating the average outcome of the exact coagulation/shattering equation, the model focuses on the calculation of the growth rate of the largest grains only. The coupled evolution equations for the maximum grain size, the surface density of the gas and the surface density of solids are then presented and solved self-consistently using a standard 1+1 dimensional formalism. I show that the global evolution of solids is controlled by a leaky reservoir of small grains at large radii, and propose an empirically derived evolution equation for the total mass of solids, which can be used to estimate the total heavy element retention efficiency in the planet formation paradigm. Consistency with observation of the total mass of solids in the Minimum Solar Nebula augmented with the mass of the Oort cloud sets strong upper limit on the initial grain size distribution, as well as on the turbulent parameter \alphat. Detailed comparisons with SED observations are presented in a following paper.Comment: Submitted to ApJ. 23 pages and 13 figure

    Oncometabolites:linking altered metabolism with cancer

    Get PDF
    The discovery of cancer-associated mutations in genes encoding key metabolic enzymes has provided a direct link between altered metabolism and cancer. Advances in mass spectrometry and nuclear magnetic resonance technologies have facilitated high-resolution metabolite profiling of cells and tumors and identified the accumulation of metabolites associated with specific gene defects. Here we review the potential roles of such "oncometabolites" in tumor evolution and as clinical biomarkers for the detection of cancers characterized by metabolic dysregulation

    Dusty gas with SPH - II. Implicit timestepping and astrophysical drag regimes

    Full text link
    In a companion paper (Laibe & Price 2011b), we have presented an algorithm for simulating two-fluid gas and dust mixtures in Smoothed Particle Hydrodynamics (SPH). In this paper, we develop an implicit timestepping method that preserves the exact conservation of the both linear and angular momentum in the underlying SPH algorithm, but unlike previous schemes, allows the iterations to converge to arbitrary accuracy and is suited to the treatment of non- linear drag regimes. The algorithm presented in Paper I is also extended to deal with realistic astrophysical drag regimes, including both linear and non-linear Epstein and Stokes drag. The scheme is benchmarked against the test suite presented in Paper I, including i) the analytic solutions of the dustybox problem and ii) solutions of the dustywave, dustyshock, dustysedov and dustydisc obtained with explicit timestepping. We find that the implicit method is 1- 10 times faster than the explicit temporal integration when the ratio r between the the timestep and the drag stopping time is 1 < r < 1000.Comment: Accepted for publication in MNRA

    Material enhancement in protoplanetary nebulae by particle drift through evaporation fronts

    Full text link
    Solid material in a protoplanetary nebula is subject to vigorous redistribution processes relative to the nebula gas. Meter-sized particles drift rapidly inwards near the nebula midplane, and material evaporates when the particles cross a condensation/evaporation boundary. The material cannot be removed as fast in its vapor form as it is being supplied in solid form, so its concentration increases locally by a large factor (more than an order of magnitude under nominal conditions). As time goes on, the vapor phase enhancement propagates for long distances inside the evaporation boundary (potentially all the way in to the star). Meanwhile, material is enhanced in its solid form over a characteristic lengthscale outside the evaporation boundary. This effect is applicable to any condensible (water, silicates, {\it etc.}). Three distinct radial enhancement/depletion regimes can be discerned by use of a simple model. Meteoritics applications include oxygen fugacity and isotopic variations, as well as isotopic homogenization in silicates. Planetary system applications include more robust enhancement of solids in Jupiter's core formation region than previously suggested. Astrophysical applications include differential, time-dependent enhancement of vapor phase CO and H2_2O in the terrestrial planet regions of actively accreting protoplanetary disks.Comment: To appear in Astrophys. J., vol 614, Oct 10 2004 issu

    The Eccentricity-Mass Distribution of Exoplanets: Signatures of Different Formation Mechanisms?

    Get PDF
    We examine the distributions of eccentricity and host star metallicity of exoplanets as a function of their mass. Planets with M sin i >~ 4 M_J have an eccentricity distribution consistent with that of binary stars, while planets with M sin i <~ 4 M_J are less eccentric than binary stars and more massive planets. In addition, host star metallicities decrease with planet mass. The statistical significance of both of these trends is only marginal with the present sample of exoplanets. To account for these trends, we hypothesize that there are two populations of gaseous planets: the low-mass population forms by gas accretion onto a rock-ice core in a circumstellar disk and is more abundant at high metalliticities, and the high-mass population forms directly by fragmentation of a pre-stellar cloud. Planets of the first population form in initially circular orbits and grow their eccentricities later, and may have a mass upper limit from the total mass of the disk that can be accreted by the core. The second population may have a mass lower limit resulting from opacity-limited fragmentation. This would roughly divide the two populations in mass, although they would likely overlap over some mass range. If most objects in the second population form before the pre-stellar cloud becomes highly opaque, they would have to be initially located in orbits larger than ~30 AU, and would need to migrate to the much smaller orbits in which they are observed. The higher mean orbital eccentricity of the second population might be caused by the larger required intervals of radial migration, and the brown dwarf desert might be due to the inability of high-mass brown dwarfs to migrate inwards sufficiently in radius.Comment: 7 pages, 4 figures. Version with expanded discussion section. Accepted for publication in A&

    Dust Size Growth and Settling in a Protoplanetary Disk

    Full text link
    We have studied dust evolution in a quiescent or turbulent protoplanetary disk by numerically solving coagulation equation for settling dust particles, using the minimum mass solar nebular model. As a result, if we assume an ideally quiescent disk, the dust particles settle toward the disk midplane to form a gravitationally unstable layer within 2x10^3 - 4x10^4 yr at 1 - 30 AU, which is in good agreement with an analytic calculation by Nakagawa, Sekiya, & Hayashi (1986) although they did not take into account the particle size distribution explicitly. In an opposite extreme case of a globally turbulent disk, on the other hand, the dust particles fluctuate owing to turbulent motion of the gas and most particles become large enough to move inward very rapidly within 70 - 3x10^4 yr at 1 - 30 AU, depending on the strength of turbulence. Our result suggests that global turbulent motion should cease for the planetesimal formation in protoplanetary disks.Comment: 27 pages, 8 figures, accepted for publication in the Ap

    Dust distribution in protoplanetary disks - Vertical settling and radial migration

    Get PDF
    We present the results of a three dimensional, locally isothermal, non-self-gravitating SPH code which models protoplanetary disks with two fluids: gas and dust. We ran simulations of a 1 Msun star surrounded by a 0.01 Msun disk comprising 99% gas and 1% dust in mass and extending from 0.5 to ~300 AU. The grain size ranges from 0.001 mm to 10 m for the low resolution (~25 000 SPH particles) simulations and from 0.1 mm to 10 cm for the high resolution (~160 000 SPH particles) simulations. Dust grains are slowed down by the sub-Keplerian gas and lose angular momentum, forcing them to migrate towards the central star and settle to the midplane. The gas drag efficiency varies according to the grain size, with the larger bodies being weakly influenced and following marginally perturbed Keplerian orbits, while smaller grains are strongly coupled to the gas. For intermediate sized grains, the drag force decouples the dust and gas, allowing the dust to preferentially migrate radially and efficiently settle to the midplane. The resulting dust distributions for each grain size will indicate, when grain growth is added, the regions when planets are likely to form.Comment: Accepted for publication in Astronomy & Astrophysics. 11 pages, 6 figure

    Derivation of the Mass Distribution of Extrasolar Planets with MAXLIMA - a Maximum Likelihood Algorithm

    Get PDF
    We construct a maximum-likelihood algorithm - MAXLIMA, to derive the mass distribution of the extrasolar planets when only the minimum masses are observed. The algorithm derives the distribution by solving a numerically stable set of equations, and does not need any iteration or smoothing. Based on 50 minimum masses, MAXLIMA yields a distribution which is approximately flat in log M, and might rise slightly towards lower masses. The frequency drops off very sharply when going to masses higher than 10 Jupiter masses, although we suspect there is still a higher mass tail that extends up to probably 20 Jupiter masses. We estimate that 5% of the G stars in the solar neighborhood have planets in the range of 1-10 Jupiter masses with periods shorter than 1500 days. For comparison we present the mass distribution of stellar companions in the range of 100--1000 Jupiter masses, which is also approximately flat in log M. The two populations are separated by the "brown-dwarf desert", a fact that strongly supports the idea that these are two distinct populations. Accepting this definite separation, we point out the conundrum concerning the similarities between the period, eccentricity and even mass distribution of the two populations.Comment: 19 pages, 3 figures, submitted to The Astrophysical Journa
    corecore