119 research outputs found
Recommended from our members
The 2015-2016 carbon cycle as seen from OCO-2 and the global in situ network
The Orbiting Carbon Observatory-2 has been on orbit since 2014, and its global coverage holds the potential to reveal new information about the carbon cycle through the use of top-down atmospheric inversion methods combined with column average CO2 retrievals. We employ a large ensemble of atmospheric inversions utilizing different transport models, data assimilation techniques, and prior flux distributions in order to quantify the satellite-informed fluxes from OCO-2 Version 7r land observations and their uncertainties at continental scales. Additionally, we use in situ measurements to provide a baseline against which to compare the satellite-constrained results. We find that within the ensemble spread, in situ observations, and satellite retrievals constrain a similar global total carbon sink of 3.7±0.5 PgC yr−1, and 1.5±0.6 PgC yr−1 for global land, for the 2015–2016 annual mean. This agreement breaks down in smaller regions, and we discuss the differences between the experiments. Of particular interest is the difference between the different assimilation constraints in the tropics, with the largest differences occurring in tropical Africa, which could be an indication of the global perturbation from the 2015–2016 El Niño. Evaluation of posterior concentrations using TCCON and aircraft observations gives some limited insight into the quality of the different assimilation constraints, but the lack of such data in the tropics inhibits our ability to make strong conclusions there.
</div
Recommended from our members
Persistent reduced ecosystem respiration after insect disturbance in high elevation forests
Amid a worldwide increase in tree mortality, mountain pine beetles (Dendroctonus ponderosae Hopkins) have led to the death of billions of trees from Mexico to Alaska since 2000. This is predicted to have important carbon, water and energy balance feedbacks on the Earth system. Counter to current projections, we show that on a decadal scale, tree mortality causes no increase in ecosystem respiration from scales of several square metres up to an 84 km2 valley. Rather, we found comparable declines in both gross primary productivity and respiration suggesting little change in net flux, with a transitory recovery of respiration 6â7 years after mortality associated with increased incorporation of leaf litter C into soil organic matter, followed by further decline in years 8â10. The mechanism of the impact of tree mortality caused by these biotic disturbances is consistent with reduced input rather than increased output of carbon
Observational and model evidence for a prominent stratospheric influence on variability in tropospheric nitrous oxide
The literature presents different views on how the stratosphere influences variability in surface nitrous oxide (N2O) and on whether that influence is outweighed by surface emission changes driven by the El
NiñoâSouthern Oscillation (ENSO). These questions are investigated using a chemistryâclimate model with a
stratospheric N2O tracer; surface and aircraft-based N2O measurements; and indices for ENSO, polar lower
stratospheric temperature (PLST), and the stratospheric quasi-biennial oscillation (QBO). The model simulates
well-defined seasonal cycles in tropospheric N2O that are caused mainly by the seasonal descent of N2O-poor
stratospheric air in polar regions with subsequent cross-tropopause transport and mixing. Similar seasonal cycles
are identified in recently available N2O data from aircraft. A correlation analysis between the N2O atmospheric
growth rate (AGR) anomaly in long-term surface monitoring data and the ENSO, PLST, and QBO indices reveals
hemispheric differences. In the Northern Hemisphere, the surface N2O AGR is negatively correlated with winter
(JanuaryâMarch) PLST. This correlation is consistent with an influence from the BrewerâDobson circulation,
which brings N2O-poor air from the middle and upper stratosphere into the lower stratosphere with associated
warming due to diabatic descent. In the Southern Hemisphere, the N2O AGR is better correlated to QBO and
ENSO indices. These different hemispheric influences on the N2O AGR are consistent with known atmospheric
dynamics and the complex interaction of the QBO with the Brewer-Dobson circulation. More airborne surveys
extending to the tropopause would help elucidate the stratospheric influence on tropospheric N2O, allowing for
better understanding of surface sources.This research has been supported by the Earth
Sciences Division (grant no. 80NSSC17K0350)
Global atmospheric COâ inverse models converging on neutral tropical land exchange, but disagreeing on fossil fuel and atmospheric growth rate
We have compared a suite of recent global COâ atmospheric inversion results to independent airborne observations and to each other, to assess their dependence on differences in northern extratropical (NET) vertical transport and to identify some of the drivers of model spread. We evaluate posterior COâ concentration profiles against observations from the High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER) Pole-to-Pole Observations (HIPPO) aircraft campaigns over the mid-Pacific in 2009â2011. Although the models differ in inverse approaches, assimilated observations, prior fluxes, and transport models, their broad latitudinal separation of land fluxes has converged significantly since the Atmospheric Carbon Cycle Inversion Intercomparison (TransCom 3) and the REgional Carbon Cycle Assessment and Processes (RECCAP) projects, with model spread reduced by 80â% since TransCom 3 and 70â% since RECCAP. Most modeled COâ fields agree reasonably well with the HIPPO observations, specifically for the annual mean vertical gradients in the Northern Hemisphere. Northern Hemisphere vertical mixing no longer appears to be a dominant driver of northern versus tropical (T) annual flux differences. Our newer suite of models still gives northern extratropical land uptake that is modest relative to previous estimates (Gurney et al., 2002; Peylin et al., 2013) and near-neutral tropical land uptake for 2009â2011. Given estimates of emissions from deforestation, this implies a continued uptake in intact tropical forests that is strong relative to historical estimates (Gurney et al., 2002; Peylin et al., 2013). The results from these models for other time periods (2004â2014, 2001â2004, 1992â1996) and re-evaluation of the TransCom 3 Level 2 and RECCAP results confirm that tropical land carbon fluxes including deforestation have been near neutral for several decades. However, models still have large disagreements on oceanâland partitioning. The fossil fuel (FF) and the atmospheric growth rate terms have been thought to be the best-known terms in the global carbon budget, but we show that they currently limit our ability to assess regional-scale terrestrial fluxes and oceanâland partitioning from the model ensemble
Atmospheric carbon dioxide variability in the Community Earth System Model : evaluation and transient dynamics during the twentieth and twenty-first centuries
Author Posting. © American Meteorological Society, 2013. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 26 (2013): 4447â4475, doi:10.1175/JCLI-D-12-00589.1.Changes in atmospheric CO2 variability during the twenty-first century may provide insight about ecosystem responses to climate change and have implications for the design of carbon monitoring programs. This paper describes changes in the three-dimensional structure of atmospheric CO2 for several representative concentration pathways (RCPs 4.5 and 8.5) using the Community Earth System ModelâBiogeochemistry (CESM1-BGC). CO2 simulated for the historical period was first compared to surface, aircraft, and column observations. In a second step, the evolution of spatial and temporal gradients during the twenty-first century was examined. The mean annual cycle in atmospheric CO2 was underestimated for the historical period throughout the Northern Hemisphere, suggesting that the growing season net flux in the Community Land Model (the land component of CESM) was too weak. Consistent with weak summer drawdown in Northern Hemisphere high latitudes, simulated CO2 showed correspondingly weak northâsouth and vertical gradients during the summer. In the simulations of the twenty-first century, CESM predicted increases in the mean annual cycle of atmospheric CO2 and larger horizontal gradients. Not only did the mean northâsouth gradient increase due to fossil fuel emissions, but eastâwest contrasts in CO2 also strengthened because of changing patterns in fossil fuel emissions and terrestrial carbon exchange. In the RCP8.5 simulation, where CO2 increased to 1150 ppm by 2100, the CESM predicted increases in interannual variability in the Northern Hemisphere midlatitudes of up to 60% relative to present variability for time series filtered with a 2â10-yr bandpass. Such an increase in variability may impact detection of changing surface fluxes from atmospheric observations.The CESM project is supported
by the National Science Foundation and the Office of
Science (BER) of the U.S. Department of Energy.
Computing resources were provided by the Climate
Simulation Laboratory at NCARâs Computational and
Information Systems Laboratory (CISL), sponsored by
the National Science Foundation and other agencies.
G.K.A. acknowledges support of a NOAA Climate and
Global Change postdoctoral fellowship. J.T.R., N.M.M.,
S.C.D., K.L., and J.K.M. acknowledge support of Collaborative
Research: Improved Regional and Decadal
Predictions of the Carbon Cycle (NSF AGS-1048827,
AGS-1021776,AGS-1048890). TheHIPPO Programwas
supported byNSF GrantsATM-0628575,ATM-0628519,
and ATM-0628388 to Harvard University, University of
California (San Diego), and by University Corporation
for Atmospheric Research, University of Colorado/
CIRES, by the NCAR and by the NOAAEarth System
Research Laboratory. Sunyoung Park, Greg Santoni,
Eric Kort, and Jasna Pittman collected data during
HIPPO. The ACME project was supported by the Office
of Biological and Environmental Research of the U.S.
Department of Energy under Contract DE-AC02-
05CH11231 as part of the Atmospheric Radiation Measurement
Program (ARM), the ARM Aerial Facility,
and the Terrestrial EcosystemScience Program. TCCON
measurements at Eureka were made by the Canadian
Network for Detection of Atmospheric Composition
Change (CANDAC) with additional support from the
Canadian Space Agency. The Lauder TCCON program
was funded by the New Zealand Foundation for Research
Science and Technology contracts CO1X0204,
CO1X0703, and CO1X0406. Measurements at Darwin
andWollongong were supported by Australian Research
Council Grants DP0879468 and DP110103118 and
were undertaken by David Griffith, Nicholas Deutscher,
and Ronald Macatangay. We thank Pauli Heikkinen,
Petteri Ahonen, and Esko KyrâŹo of the Finnish Meteorological
Institute for contributing the SodankylâŹa
TCCON data. Measurements at Park Falls, Lamont, and
Pasadena were supported byNASAGrant NNX11AG01G
and the NASA Orbiting Carbon Observatory Program.
Data at these sites were obtained by Geoff Toon, Jean-
Francois Blavier, Coleen Roehl, and Debra Wunch.2014-01-0
Recommended from our members
Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020)
Here we present a global and regionally resolved terrestrial net biosphere exchange (NBE) dataset with corresponding uncertainties between 2010-2018: Carbon Monitoring System Flux Net Biosphere Exchange 2020 (CMS-Flux NBE 2020). It is estimated using the NASA Carbon Monitoring System Flux (CMS-Flux) top-down flux inversion system that assimilates column CO2 observations from the Greenhouse Gases Observing Satellite (GOSAT) and NASA\u27s Observing Carbon Observatory 2 (OCO-2). The regional monthly fluxes are readily accessible as tabular files, and the gridded fluxes are available in NetCDF format. The fluxes and their uncertainties are evaluated by extensively comparing the posterior CO2 mole fractions with CO2 observations from aircraft and the NOAA marine boundary layer reference sites. We describe the characteristics of the dataset as the global total, regional climatological mean, and regional annual fluxes and seasonal cycles. We find that the global total fluxes of the dataset agree with atmospheric CO2 growth observed by the surface-observation network within uncertainty. Averaged between 2010 and 2018, the tropical regions range from close to neutral in tropical South America to a net source in Africa; these contrast with the extra-tropics, which are a net sink of 2.5±0.3 Gt C/year. The regional satellite-constrained NBE estimates provide a unique perspective for understanding the terrestrial biosphere carbon dynamics and monitoring changes in regional contributions to the changes of atmospheric CO2 growth rate. The gridded and regional aggregated dataset can be accessed at http://doi.org/10.25966/4v02-c391 (Liu et al., 2020).
Design, Commissioning and Performance of the PIBETA Detector at PSI
We describe the design, construction and performance of the PIBETA detector
built for the precise measurement of the branching ratio of pion beta decay,
pi+ -> pi0 e+ nu, at the Paul Scherrer Institute. The central part of the
detector is a 240-module spherical pure CsI calorimeter covering 3*pi sr solid
angle. The calorimeter is supplemented with an active collimator/beam degrader
system, an active segmented plastic target, a pair of low-mass cylindrical wire
chambers and a 20-element cylindrical plastic scintillator hodoscope. The whole
detector system is housed inside a temperature-controlled lead brick enclosure
which in turn is lined with cosmic muon plastic veto counters. Commissioning
and calibration data were taken during two three-month beam periods in
1999/2000 with pi+ stopping rates between 1.3*E3 pi+/s and 1.3*E6 pi+/s. We
examine the timing, energy and angular detector resolution for photons,
positrons and protons in the energy range of 5-150 MeV, as well as the response
of the detector to cosmic muons. We illustrate the detector signatures for the
assorted rare pion and muon decays and their associated backgrounds.Comment: 117 pages, 48 Postscript figures, 5 tables, Elsevier LaTeX, submitted
to Nucl. Instrum. Meth.
Impact of stratospheric air and surface emissions on tropospheric nitrous oxide during ATom
We measured the global distribution of tropospheric N2O mixing ratios during the NASA airborne Atmospheric Tomography (ATom) mission. ATom measured concentrations of âŒâ300 gas species and aerosol properties in 647 vertical profiles spanning the Pacific, Atlantic, Arctic, and much of the Southern Ocean basins, nearly from pole to pole, over four seasons (2016â2018). We measured N2O concentrations at 1âHz using a quantum cascade laser spectrometer (QCLS). We introduced a new spectral retrieval method to account for the pressure and temperature sensitivity of the instrument when deployed on aircraft. This retrieval strategy improved the precision of our ATom QCLS N2O measurements by a factor of three (based on the standard deviation of calibration measurements). Our measurements show that most of the variance of N2O mixing ratios in the troposphere is driven by the influence of N2O-depleted stratospheric air, especially at mid- and high latitudes. We observe the downward propagation of lower N2O mixing ratios (compared to surface stations) that tracks the influence of stratosphereâtroposphere exchange through the tropospheric column down to the surface. The highest N2O mixing ratios occur close to the Equator, extending through the boundary layer and free troposphere. We observed influences from a complex and diverse mixture of N2O sources, with emission source types identified using the rich suite of chemical species measured on ATom and the geographical origin calculated using an atmospheric transport model. Although ATom flights were mostly over the oceans, the most prominent N2O enhancements were associated with anthropogenic emissions, including from industry (e.g., oil and gas), urban sources, and biomass burning, especially in the tropical Atlantic outflow from Africa. Enhanced N2O mixing ratios are mostly associated with pollution-related tracers arriving from the coastal area of Nigeria. Peaks of N2O are often associated with indicators of photochemical processing, suggesting possible unexpected source processes. In most cases, the results show how difficult it is to separate the mixture of different sources in the atmosphere, which may contribute to uncertainties in the N2O global budget. The extensive data set from ATom will help improve the understanding of N2O emission processes and their representation in global models.This research has been supported by the National Aeronautics and Space Administration (grant nos. NNX15AJ23G, NNX17AF54G, NNX15AG58A, NNX15AH33A, and 80NSSC19K0124) and the National Science Foundation (grant nos. 1852977, AGS-1547626, and AGS-1623745)
Recommended from our members
Seasonal pattern of regional carbon balance in the central Rocky Mountains from surface and airborne measurements
[1] High-elevation forests represent a large fraction of potential carbon uptake in North America, but this uptake is not well constrained by observations. Additionally, forests in the Rocky Mountains have recently been severely damaged by drought, fire, and insect outbreaks, which have been quantified at local scales but not assessed in terms of carbon uptake at regional scales. The Airborne Carbon in the Mountains Experiment was carried out in 2007 partly to assess carbon uptake in western U.S. mountain ecosystems. The magnitude and seasonal change of carbon uptake were quantified by (1) paired upwind-downwind airborne CO2 observations applied in a boundary layer budget, (2) a spatially explicit ecosystem model constrained using remote sensing and flux tower observations, and (3) a downscaled global tracer transport inversion. Top-down approaches had mean carbon uptake equivalent to flux tower observations at a subalpine forest, while the ecosystem model showed less. The techniques disagreed on temporal evolution. Regional carbon uptake was greatest in the early summer immediately following snowmelt and tended to lessen as the region experienced dry summer conditions. This reduction was more pronounced in the airborne budget and inversion than in flux tower or upscaling, possibly related to lower snow water availability in forests sampled by the aircraft, which were lower in elevation than the tower site. Changes in vegetative greenness associated with insect outbreaks were detected using satellite reflectance observations, but impacts on regional carbon cycling were unclear, highlighting the need to better quantify this emerging disturbance effect on montane forest carbon cycling
- âŠ