38 research outputs found

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Perampanel for the treatment of epilepsy with genetic aetiology: Real-world evidence from the PERMIT Extension study

    Get PDF
    Genetic factors contribute to the aetiology of epilepsy in \u3e50% of cases, and information on the use of antiseizure medications in people with specific aetiologies will help guide treatment decisions. The PERMIT Extension study pooled data from two real-world studies (PERMIT and PROVE) to investigate the effectiveness and safety/tolerability of perampanel (PER) when used to treat people with focal and generalised epilepsy in everyday clinical practice. This post-hoc analysis of PERMIT Extension explored the use of PER when used to treat individuals presumed to have epilepsy with a genetic aetiology. Assessments included retention rate (evaluated at 3, 6 and 12 months), effectiveness (responder and seizure freedom rates; evaluated at 3, 6, 12 months and the last visit [last observation carried forward) and tolerability (adverse events [AEs]). Of the 6822 people with epilepsy included in PERMIT Extension, 1012 were presumed to have a genetic aetiology. The most common genetic aetiologies were idiopathic generalised epilepsy (IGE; 58.2%), tuberous sclerosis (1.1%), Dravet syndrome (0.8%) and genetic epilepsy with febrile seizures plus (GEFS+; 0.5%). Retention rates at 3, 6 and 12 months in the total genetic aetiology population were 89.3%, 79.7% and 65.9%, respectively. In the total genetic aetiology population, responder rates at 12 months and the last visit were 74.8% and 68.3%, respectively, and corresponding seizure freedom rates were 48.9% and 46.5%, respectively. For the specific aetiology subgroups, responder rates at 12 months and the last visit were, respectively: 90.4% and 84.4% (IGE), 100% and 57.1% (tuberous sclerosis), 100% and 71.4% (Dravet syndrome), and 33.3% and 20.0% (GEFS+). Corresponding seizure freedom rates were, respectively: 73.1% and 64.6% (IGE), 33.3% and 22.2% (tuberous sclerosis), 20.0% and 28.6% (Dravet syndrome), and 0% and 0% (GEFS+). The incidence of AEs was 46.5% for the total genetic aetiology population, 48.8% for IGE, 27.3% for tuberous sclerosis, 62.5% for Dravet syndrome, and 20% for GEFS+. Tolerability findings were consistent with PER\u27s known safety profile. PER was effective and generally well tolerated when used in individuals with a presumed genetic epilepsy aetiology in clinical practice. PER was effective across a wide range of genetic aetiologies

    Intratumoural Heterogeneity Underlies Distinct Therapy Responses and Treatment Resistance in Glioblastoma

    No full text
    Glioblastomas are the most common and lethal neoplasms of the central nervous system. Neighbouring glioma cells maintain extreme degrees of genetic and phenotypic variation that form intratumoural heterogeneity. This genetic diversity allows the most adaptive tumour clones to develop treatment resistance, ultimately leading to disease recurrence. We aimed to model this phenomenon and test the effectiveness of several targeted therapeutic interventions to overcome therapy resistance. Heterogeneous tumour masses were first deconstructed into single tumour cells, which were expanded independently as single-cell clones. Single nucleotide polymorphism arrays, whole-genome and RNA sequencing, and CpG methylation analysis validated the unique molecular profile of each tumour clone, which displayed distinct pathologic features, including cell morphology, growth rate, and resistance to temozolomide and ionizing radiation. We also identified variable sensitivities to AURK, CDK, and EGFR inhibitors which were consistent with the heterogeneous molecular alterations that each clone harboured. These targeted therapies effectively eliminated the temozolomide- and/or irradiation-resistant clones and also parental polyclonal cells. Our findings indicate that polyclonal tumours create a dynamic environment that consists of diverse tumour elements and treatment responses. Designing targeted therapies based on a range of molecular profiles can be a more effective strategy to eradicate treatment resistance, recurrence, and metastasis

    Single-molecule sequencing reveals the molecular basis of multidrug-resistance in ST772 methicillin-resistant Staphylococcus aureus

    Get PDF
    YCT is an Australian National Health and Medical Research Council Career Development Fellow (1065736). DAR was supported in part by National Institutes of Health grant GM080602. SRH, PC, MTGH, JP and SDB were supported by Wellcome Trust grant 098051.Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of hospital-associated infection, but there is growing awareness of the emergence of multidrug-resistant lineages in community settings around the world. One such lineage is ST772-MRSA-V, which has disseminated globally and is increasingly prevalent in India. Here, we present the complete genome sequence of DAR4145, a strain of the ST772-MRSA-V lineage from India, and investigate its genomic characteristics in regards to antibiotic resistance and virulence factors.Publisher PDFPeer reviewe
    corecore