11 research outputs found

    Tm1: A Mutator/Foldback Transposable Element Family in Root-Knot Nematodes

    Get PDF
    Three closely related parthenogenetic species of root-knot nematodes, collectively termed the Meloidogyne incognita-group, are economically significant pathogens of diverse crop species. Remarkably, these asexual root-knot nematodes are capable of acquiring heritable changes in virulence even though they lack sexual reproduction and meiotic recombination. Characterization of a near isogenic pair of M. javanica strains differing in response to tomato with the nematode resistance gene Mi-1 showed that the virulent strain carried a deletion spanning a gene called Cg-1. Herein, we present evidence that the Cg-1 gene lies within a member of a novel transposable element family (Tm1; Transposon in Meloidogyne-1). This element family is defined by composite terminal inverted repeats of variable lengths similar to those of Foldback (FB) transposable elements and by 9 bp target site duplications. In M. incognita, Tm1 elements can be classified into three general groups: 1) histone-hairpin motif elements; 2) MITE-like elements; 3) elements encoding a putative transposase. The predicted transposase shows highest similarity to gene products encoded by aphids and mosquitoes and resembles those of the Phantom subclass of the Mutator transposon superfamily. Interestingly, the meiotic, sexually-reproducing root-knot nematode species M. hapla has Tm1 elements with similar inverted repeat termini, but lacks elements with histone hairpin motifs and contains no elements encoding an intact transposase. These Tm1 elements may have impacts on root-knot nematode genomes and contribute to genetic diversity of the asexual species

    HLA-DQA1*05 carriage associated with development of anti-drug antibodies to infliximab and adalimumab in patients with Crohn's Disease

    Get PDF
    Anti-tumor necrosis factor (anti-TNF) therapies are the most widely used biologic drugs for treating immune-mediated diseases, but repeated administration can induce the formation of anti-drug antibodies. The ability to identify patients at increased risk for development of anti-drug antibodies would facilitate selection of therapy and use of preventative strategies.This article is freely available via Open Access. Click on Publisher URL to access the full-text

    Soil and vegetation systems

    No full text
    xii, 180 p.; 23 cm

    Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus

    Get PDF
    Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (Pcombined = 4.09 × 10−9; odds ratio (OR) = 1.21, 95% confidence interval (CI) =1.13–1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (Pcombined = 2.74 × 10−10; OR = 1.14, 95% CI = 1.10–1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus

    Common variants at the MHC locus and at chromosome 16q24.1 predispose to Barrett's esophagus

    No full text
    Barrett's esophagus is an increasingly common disease that is strongly associated with reflux of stomach acid and usually a hiatus hernia, and it strongly predisposes to esophageal adenocarcinoma (EAC), a tumor with a very poor prognosis. We report the first genome-wide association study on Barrett's esophagus, comprising 1,852 UK cases and 5,172 UK controls in the discovery stage and 5,986 cases and 12,825 controls in the replication stage. Variants at two loci were associated with disease risk: chromosome 6p21, rs9257809 (P combined = 4.09 × 10-9; odds ratio (OR) = 1.21, 95% confidence interval (CI) =1.13-1.28), within the major histocompatibility complex locus, and chromosome 16q24, rs9936833 (P combined = 2.74 × 10-10; OR = 1.14, 95% CI = 1.10-1.19), for which the closest protein-coding gene is FOXF1, which is implicated in esophageal development and structure. We found evidence that many common variants of small effect contribute to genetic susceptibility to Barrett's esophagus and that SNP alleles predisposing to obesity also increase risk for Barrett's esophagus. © 2012 Nature America, Inc. All rights reserved
    corecore