110 research outputs found

    Chemical Cues for Malaria Vectors Oviposition Site Selection:\ud Challenges and Opportunities

    Get PDF
    The attractiveness of oviposition site for malaria vector mosquitoes is dependent upon a number of physical and chemical factors. Many aspects of mosquito behavior, including host location and oviposition, are mediated by volatile semiochemicals. It is anticipated that selection of oviposition site by semio-chemicals in the form of attractants or stimulants can be used in oviposition traps to monitor or possibly in combination with insecticides to control gravid mosquito populations for mass trapping. So far, volatile compounds identified as oviposition attractants for mosquitoes include phenol, 4-methyl phenol, 4-ethyl phenol, indole, skatole, and p-cresol from hay infusions; 3-carene, terpinene, copaene, cedrene, and d-cadinene released by copepods; alcohol and terpenoids including p-cresol fromplants; ethyl acetate and hydrocarbon substances, probably released by filamentous algae; 3-methyl-1-butanol identified frombacteria. Research priorities should be directed at identifying more oviposition attractants to determine the properties of these semio-chemicals for possible use in designing control tools. This would aim at luring females to lethal traps or stimulants to increase their exposure to insecticide-impregnated substrates.\ud \u

    Knowledge and perceptions about indoor residual spray for malaria prevention in Mumberes division, Nandi County in Central province of Kenya

    Get PDF
    Background: Malaria control and intervention tools usage and coverage in community depend on community acceptability and compliance. Indoor residual spray (IRS) and long lasting insecticide treated nets (LLINs) are the preferred and recommended intervention tools. This study assessed the knowledge and perceptions about indoor residual spraying for malaria prevention in Mumberes division, Nandi County in Central Kenya. This cross-sectional study was carried out to determine KAP on malaria using IRS as a control tool for malaria transmission of the communities in Mumberes division of Koibatek district.Methods: Household heads were interviewed on the socio-demographic characteristics, knowledge about IRS, role played by IRS in control of malaria, role of household heads in IRS programme and frequency of spraying. The study used scheduled questionnaires to obtain the information from household members.Results: A total of 348 household members were involved in the study. This study indicated that age, marital status, occupation and income levels were the significant (P<0.05) determinants of utilization of IRS among the rural communities in Mumberes division.Conclusion: This study has demonstrated that, malaria control through the use of IRS in the rural community can be conducted with full participation of the local community members.

    Reduced Hatchability of Anopheles gambiae s.s eggs in Presence of Third Instar Larvae.

    Get PDF
    We investigated the hatchability rates of freshly laid Anopheles gambiae s.s. eggs in presence of third instars larvae. These experiments were conducted using 30 eggs in larval densities of 20, 60 and 100 larvae in microcosms. These experiments were designed to evaluate the eggs hatchability in habitats with late larvae instars of the same species (experimental) or no larvae at all (control). Freshly laid eggs of An.gambiae s.s. were washed in microcosms containing larvae of third instars in different three densities (20, 60 and 100) and likewise in control microcosms (without larvae). Eggs hatchability was monitored twice daily until no more first instar larvae emerged. The numbers of first instars larvae were recorded daily and lost eggs were considered preyed upon by third instars. The findings of this study showed that egg hatchability was significantly influenced by larval density. The findings of this study suggest that presence of larvae in habitats may significantly reduce hatchability of eggs

    A diverse global fungal library for drug discovery

    Get PDF
    Background: Secondary fungal metabolites are important sources for new drugs against infectious diseases and cancers. Methods: To obtain a library with enough diversity, we collected about 2,395 soil samples and 2,324 plant samples from 36 regions in Africa, Asia, and North America. The collection areas covered various climate zones in the world. We examined the usability of the global fungal extract library (GFEL) against parasitic malaria transmission, Gram-positive and negative bacterial pathogens, and leukemia cells. Results: Nearly ten thousand fungal strains were isolated. Sequences of nuclear ribosomal internal transcribed spacer (ITS) from 40 randomly selected strains showed that over 80% were unique. Screening GFEL, we found that the fungal extract from was able to block transmission to , and the fungal extract from was able to kill myelogenous leukemia cell line K562. We also identified a set of candidate fungal extracts against bacterial pathogens

    Adherence to prescribed artemisinin-based combination therapy in Garissa and Bunyala districts, Kenya

    Get PDF
    BACKGROUND: Following the development of resistance to anti-malarial mono-therapies, malaria endemic countries in Africa now use artemisinin-based combination therapy (ACT) as recommended first-line treatment for uncomplicated malaria. Patients' adherence to ACT is an important factor to ensure treatment efficacy, as well as to reduce the likelihood of parasite resistance to these drugs. This study reports adherence to a specific ACT, artemether-lumefantrine (AL), under conditions of routine clinical practice in Kenya. METHOD: The study was undertaken in Garissa and Bunyala districts among outpatients of five government health facilities. Patients treated with AL were visited at home four days after having been prescribed the drug. Respondents (patients ≥ 15 years and caregivers of patients < 15 years) were interviewed using a standardized questionnaire, AL blister packs were physically inspected and the adherence status of patients was then recorded. Multivariate logistic regression modelling was used to determine predictors of adherence. RESULTS: Of the 918 patients included in the study, 588 (64.1%) were 'probably adherent', 291 (31.7%) were 'definitely non-adherent' and 39 (4.2%) were 'probably non-adherent'. Six factors were found to be significant predictors of adherence: patient knowledge of the ACT dosing regimen (odds ratio (OR) = 1.76; 95% CI = 1.32-2.35), patient age (OR = 1.65; 95% CI = 1.02-1.85), respondent age (OR = 1.37; 95% CI = 1.10-2.48), whether a respondent had seen AL before (OR = 1.46; 95% CI = 1.08-1.98), whether a patient had reported dislikes to AL (OR = 0.62 95% CI = 0.47-0.82) and whether a respondent had waited more than 24 hours to seek treatment (OR = 0.73; 95% CI = 0.54-0.99). CONCLUSION: Overall, adherence to AL was found to be low in both Garissa and Bunyala districts, with patient knowledge of the AL dosing regimen found to be the strongest predictor of adherence. Interventions aimed at increasing community awareness of the AL dosing regimen, use of child friendly formulations and improving health workers' prescribing practices are likely to ensure higher adherence to AL and eventual treatment success

    Habitat stability and occurrences of malaria vector larvae in western Kenya highlands

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although the occurrence of malaria vector larvae in the valleys of western Kenya highlands is well documented, knowledge of larval habitats in the uphill sites is lacking. Given that most inhabitants of the highlands actually dwell in the uphill regions, it is important to develop understanding of mosquito breeding habitat stability in these sites in order to determine their potential for larval control.</p> <p>Methods</p> <p>A total of 128 potential larval habitats were identified in hilltops and along the seasonal streams in the Sigalagala area of Kakamega district, western Kenya. Water availability in the habitats was followed up daily from August 3, 2006 to February 23, 2007. A habitat is defined as stable when it remains aquatic continuously for at least 12 d. Mosquito larvae were observed weekly. Frequencies of aquatic, stable and larvae positive habitats were compared between the hilltop and seasonal stream area using χ<sup>2</sup>-test. Factors affecting the presence/absence of <it>Anopheles gambiae </it>larvae in the highlands were determined using multiple logistic regression analysis.</p> <p>Results</p> <p>Topography significantly affected habitat availability and stability. The occurrence of aquatic habitats in the hilltop was more sporadic than in the stream area. The percentage of habitat occurrences that were classified as stable during the rainy season is 48.76% and 80.79% respectively for the hilltop and stream area. Corresponding frequencies of larvae positive habitats were 0% in the hilltop and 5.91% in the stream area. After the rainy season, only 23.42% of habitat occurrences were stable and 0.01% larvae positive habitats were found in the hilltops, whereas 89.75% of occurrences remained stable in the stream area resulting in a frequency of 12.21% larvae positive habitats. The logistic regression analysis confirmed the association between habitat stability and larval occurrence and indicated that habitat surface area was negatively affecting the occurrence of <it>An. gambiae </it>larvae. While <it>An. gambiae </it>and <it>An. funestus </it>larvae occurred throughout the study period along the streams, a total of only 15 <it>An. gambiae </it>larvae were counted in the hilltops, and no <it>An. funestus </it>were found. Moreover, no larvae managed to develop into adults in the hilltops, and the density of adult <it>An. gambiae </it>was consistently low, averaging at 0.06 females per house per survey.</p> <p>Conclusion</p> <p>The occurrence of malaria vector larvae in the hilltop area was uncommon as a result of the low availability and high instability of habitats. To optimize the cost-effectiveness of malaria interventions in the western Kenya highlands, larval control should be focused primarily along the streams, as these are likely the only productive habitats at high altitude.</p

    Investigating the acceptability of non-mesh, long-lasting insecticidal nets amongst nomadic communities in Garissa County, Kenya using a prospective, longitudinal study design and cross-sectional household surveys.

    Get PDF
    BACKGROUND: North East Kenya is an area of semi-arid terrain, prone to malaria epidemics. The distribution of long-lasting insecticidal nets (LLINs) has long been a key malaria intervention, however, for nomadic populations who live and sleep outside, in harsh climates and areas with increasing reports of exophagic behaviour of mosquitoes, traditional LLINs are often inadequate. This study investigates the acceptability of non-mesh LLINs, specifically designed to suit nomadic, outdoor sleeping communities. METHODS: In September 2011, 13,922 non-mesh LLINs were distributed to 8,511 nomadic households in Garissa County, North East Province, Kenya. A prospective, longitudinal study design was used to assess the acceptability of this novel type of LLIN. Cross-sectional household surveys, focus group discussions (FGDs), and key informant interviews (KIs) were used to collect data on attitudes and practices regarding the Dumuria nets. RESULTS: A very high level of acceptability was reported with 95.3% of respondents stating they liked the nets. Of the factors reportedly determining net use the most frequently mentioned was "vulnerability". Of those with concerns about the nets, the colour (white) was the most frequently reported. CONCLUSION: The tailoring of LLINs to specific communities and contexts leads to increased levels of acceptability. Large-scale, blanket net distribution campaigns, which are currently the standard practice, do not cater for the specific and nuanced needs of the differing communities they often serve. This non-mesh LLIN offers a highly effective and desirable malaria prevention option to a typically hard to reach and underserved nomadic population at increased risk of malaria infection

    Investigating a Non-Mesh Mosquito Net Among Outdoor Sleeping Nomadic Communities in Kenya.

    Get PDF
    Rising reports of exophagic malaria vectors make even more pressing the need for alternatives to traditional, mesh, long-lasting insecticidal nets (LLINs) designed for indoor sleeping and often inadequate in the protection of outdoor-sleeping populations. This study tests and evaluates the retention, utilization, and durability of novel, non-mesh nets designed for outdoor use. Longitudinal, cross-sectional surveys were conducted, the physical condition of nets was assessed, and bio-efficacy and insecticide content were tested. At 22 months, retention was 98.0%; 97.1% of nets fell within the World Health Organization (WHO) category of being in "good" condition; none were in the "torn" category. At 18 months post-distribution, 100% of nets had at least WHO Pesticide Evaluation Scheme (WHOPES)-acceptable levels of insecticide, this proportion was 66.7% at 22 months. This novel mosquito net has the potential to provide a durable and context-specific tool to prevent malaria among traditionally hard-to-protect and highly vulnerable populations

    Landscape determinants and remote sensing of anopheline mosquito larval habitats in the western Kenya highlands

    Get PDF
    BACKGROUND: In the past two decades the east African highlands have experienced several major malaria epidemics. Currently there is a renewed interest in exploring the possibility of anopheline larval control through environmental management or larvicide as an additional means of reducing malaria transmission in Africa. This study examined the landscape determinants of anopheline mosquito larval habitats and usefulness of remote sensing in identifying these habitats in western Kenya highlands. METHODS: Panchromatic aerial photos, Ikonos and Landsat Thematic Mapper 7 satellite images were acquired for a study area in Kakamega, western Kenya. Supervised classification of land-use and land-cover and visual identification of aquatic habitats were conducted. Ground survey of all aquatic habitats was conducted in the dry and rainy seasons in 2003. All habitats positive for anopheline larvae were identified. The retrieved data from the remote sensors were compared to the ground results on aquatic habitats and land-use. The probability of finding aquatic habitats and habitats with Anopheles larvae were modelled based on the digital elevation model and land-use types. RESULTS: The misclassification rate of land-cover types was 10.8% based on Ikonos imagery, 22.6% for panchromatic aerial photos and 39.2% for Landsat TM 7 imagery. The Ikonos image identified 40.6% of aquatic habitats, aerial photos identified 10.6%, and Landsate TM 7 image identified 0%. Computer models based on topographic features and land-cover information obtained from the Ikonos image yielded a misclassification rate of 20.3–22.7% for aquatic habitats, and 18.1–25.1% for anopheline-positive larval habitats. CONCLUSION: One-metre spatial resolution Ikonos images combined with computer modelling based on topographic land-cover features are useful tools for identification of anopheline larval habitats, and they can be used to assist to malaria vector control in western Kenya highlands

    Impact of indoor residual spraying with pirimiphos-methyl (Actellic 300CS) on entomological indicators of transmission and malaria case burden in Migori County, western Kenya

    Get PDF
    Indoor residual spraying (IRS) of insecticides is a major vector control strategy for malaria prevention. We evaluated the impact of a single round of IRS with the organophosphate, pirimiphos-methyl (Actellic 300CS), on entomological and parasitological parameters of malaria in Migori County, western Kenya in 2017, in an area where primary vectors are resistant to pyrethroids but susceptible to the IRS compound. Entomological monitoring was conducted by indoor CDC light trap, pyrethrum spray catches (PSC) and human landing collection (HLC) before and after IRS. The residual effect of the insecticide was assessed monthly by exposing susceptible An. gambiae s.s. Kisumu strain to sprayed surfaces in cone assays and measuring mortality at 24 hours. Malaria case burden data were extracted from laboratory records of four health facilities within the sprayed area and two adjacent unsprayed areas. IRS was associated with reductions in An. funestus numbers in the intervention areas compared to non-intervention areas by 88% with light traps (risk ratio [RR] 0.12, 95% CI 0.07–0.21, p < 0.001) and 93% with PSC collections (RR = 0.07, 0.03–0.17, p < 0.001). The corresponding reductions in the numbers of An. arabiensis collected by PSC were 69% in the intervention compared to the non-intervention areas (RR = 0.31, 0.14–0.68, p = 0.006), but there was no significant difference with light traps (RR = 0.45, 0.21–0.96, p = 0.05). Before IRS, An. funestus accounted for over 80% of Anopheles mosquitoes collected by light trap and PSC in all sites. After IRS, An. arabiensis accounted for 86% of Anopheles collected by PSC and 66% by CDC light trap in the sprayed sites while the proportion in non-intervention sites remained unchanged. No sporozoite infections were detected in intervention areas after IRS and biting rates by An. funestus were reduced to near zero. Anopheles funestus and An. arabiensis were fully susceptible to pirimiphos-methyl and resistant to pyrethroids. The residual effect of Actellic 300CS lasted ten months on mud and concrete walls. Malaria case counts among febrile patients within IRS areas was lower post- compared to pre-IRS by 44%, 65% and 47% in Rongo, Uriri and Nyatike health facilities respectively. A single application of IRS with Actellic 300CS in Migori County provided ten months protection and resulted in the near elimination of the primary malaria vector An. funestus and a corresponding reduction of malaria case count among out-patients. The impact was less on An. arabiensis, most likely due to their exophilic nature
    corecore