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ABSTRACT
Background. Secondary fungalmetabolites are important sources for new drugs against
infectious diseases and cancers.
Methods. To obtain a library with enough diversity, we collected about 2,395 soil
samples and 2,324 plant samples from 36 regions in Africa, Asia, and North America.
The collection areas covered various climate zones in the world. We examined
the usability of the global fungal extract library (GFEL) against parasitic malaria
transmission, Gram-positive and negative bacterial pathogens, and leukemia cells.
Results. Nearly ten thousand fungal strains were isolated. Sequences of nuclear
ribosomal internal transcribed spacer (ITS) from 40 randomly selected strains showed
that over 80% were unique. Screening GFEL, we found that the fungal extract from
Penicillium thomii was able to block Plasmodium falciparum transmission to Anopheles
gambiae, and the fungal extract fromTolypocladium albumwas able to kill myelogenous
leukemia cell line K562. We also identified a set of candidate fungal extracts against
bacterial pathogens.

Subjects Molecular Biology, Mycology, Drugs and Devices, Infectious Diseases
Keywords Fungus, Secondary metabolites, Small molecule, Natural product, Drugs, Anti-malaria,
Antibiotics, Anti-leukemia

INTRODUCTION
Natural products, produced by living organisms in nature, have been used as medicine for
thousands of years (Dias, Urban & Roessner, 2012; Buyel, 2018). For instance, the treatment
of malaria was recorded in China with the Qinghao plant (Artemisia annua) as early as the
second century. The active ingredient, qinghaosu (artemisinin), was isolated from the plant
by Youyou Tu and her colleagues in 1971 (Luo & Shen, 1987;Hsu, 2006). The establishment
of microbiology in the early modern era led to drug discoveries from microbes. The first
antibiotic, penicillin, was discovered from a fungus by Alexander Fleming (Fleming, 1929).
Fungi have initially been and still are used to produce medicines to treat infectious diseases
(Elder, 1944). Furthermore, people use natural products to treat tumors. Indeed, more
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than half of anti-tumor drugs or leads in current clinical trials are from natural products
(Wolfender & Queiroz, 2012).

Microbial metabolites are essential resources for drug discovery (Lenzi et al., 2018).
Compared with other natural product resources, fungi have the following advantages.
First, there are enormous fungal species: about 120,000 fungal species have been described
(Hawksworth & Lucking, 2017) and 5.1 million fungal species are estimated (Blackwell,
2011). Second, fungi produce broad and diverse secondarymetabolites with a vast difference
in chemical structures (Pham et al., 2019). Third, large-scale fermentation can generate
a large amount of fungal secondary metabolites, which was exampled by the production
of alcohol and lactic acid. However, yield of many target fungal secondary metabolites is
restricted by fungal growth and differentiation (Nielsen & Nielsen, 2017; Keller, 2019; Pham
et al., 2019), which is resolved by new technologies that enable us to engineer a fungus to
produce a specific compound in high yield by modifying its metabolic pathways (Van Dijk
& Wang, 2016). Also, the recent development of genomic sequencing technology and the
identification of more biosynthetic gene clusters accelerate the discovery and application
of new compounds from fungi (Hussain et al., 2017; Keller, 2019).

Fungi can be isolated from soil, water, air, plants, or other organisms. In particular,
the endophytic fungi from the plants can generate similar secondary metabolites as their
hosts (Venieraki, Dimou & Katinakis, 2017). Thus, the heterologous expression can replace
their hosts as the supplies of crude materials for some medicines (Van Dijk & Wang,
2016). Diverse fungal libraries are critical for the research and industry communities
(Niu et al., 2015). At present, there are several specific fungal libraries for drug discovery
(May et al., 2004; Richards et al., 2012; Zhang et al., 2014), many of which focus on specific
environments (Li et al., 2005; Gonzalez-Menendez et al., 2018; Zhang et al., 2018). We focus
on generating a global diverse fungal library to facilitate new drug discovery. The soil and
plant samples were collected globally, currently including from Asia, Africa, and North
America.

To determine the usability of our fungal library, we screened the newly established
fungal extract library for malaria transmission inhibitors, antibiotics, and drug leads
against chronic myeloid leukemia. A set of positives were discovered.

MATERIALS & METHODS
Collecting samples
We collected plant and soil samples from different regions around the world. The field
collection was approved by the United States Department of Agriculture with permit
number of P526P-18-03319. The soil samples were taken in 5–10 cm depths under the
surface. Plant samples consisted of the whole plant or separated plant parts such as roots,
stems, leaves, flowers, fruits, or various combinations of components. Samples were stored
on ice or in a 4 ◦C fridge immediately after collection. No samples were more than 5 g. Most
of samples collected by authors, residents, and friends were mailed to labs and processed
locally. For instance, samples collected in China and Myanmar were shipped to Guomin
Niu’s lab in Guangdong, China to process. Samples collected in the US were processed at
Jun Li’s lab in Florida, USA. The fungal extracts form the GFEL library.
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Isolation of fungi from soil and plants
For each soil sample, we transferred 50 mg soil to a 1.5 mL plastic tube, and one mL
autoclaved distilled water was added. The sample was vortexed for 30 secs and centrifuged
at 500 g for 2 min (min) to get rid of the soil particles. For plant samples, the first step
was to sterilize the plant surface by rinsing the sample with distilled H2O, then soaking
in 70% ethanol for 10 s (sec) and rinsing again with distilled H2O. After sterilization, the
plants were cut into 0.5 cm × 0.5 cm pieces and transferred into a sterile mortar. Then,
two mL of distilled H2O was added, followed by grinding with a pestle for 1–3 min and the
slurry was transferred to a 1.5 mL plastic tube and then centrifuged at 500 g for 2 min to
get rid of the particles. About 100 µL of upper supernatant from treated soil or plants was
evenly spread onto a 100 × 15 mm Petri Dish plate containing 14 mL Malt Extract Agar
(MEA), made of 10 g malt extract, 1 g yeast extract, 15 g agar, and 0.05 g chloramphenicol
(Sigma-Aldrich, St. Louis, MO) in 1 L distilled H2O and autoclaved at 121 ◦C for 20 min.
The plates were sealed with parafilm, and the fungi were allowed to grow for 7–14 days at
room temperature (RT) with cycles of 12 h (hr) of darkness and 12 hr of light.

The fungal colonies on the MEA medium plates were picked with a toothpick and
inoculated in a new MEA plate by streaking. If the colonies were mixtures of two or more
species, we kept inoculating and streaking until a single colony appeared. Finally, a piece of
fungal agar containing mycelium or spores was cut and transferred to a 1.5 mL Eppendorf
tube containing 500 µL of sterile 20% glycerol in distilled H2O. We stored the cells in a
−80 ◦C freezer for long-term storage.

Metabolite production and extraction
Cereal based medium was used to grow fungi to produce secondary metabolites (Niu et
al., 2015). Briefly, six pieces of Cheerios Breakfast cereals (General Mills, Minneapolis,
MN) were placed in a glass test tube, capped with a plastic lid and autoclaved for 20
min, and then two mL sterile sucrose water (3 g of sucrose and 50 mg chloramphenicol
in 1 L distilled H2O) was added into the tube. Later, the fungal colony grown on the
MEA plate was inoculated into the cereal medium and incubated at RT for one month to
produce sufficient metabolites. A month late, two mL ethyl acetate was added into a tube
to extract the fungal metabolites, mixed with a glass stirring rod, and placed overnight in a
chemical hood with gentle shaking. The next day, one mL upper layer of supernatant was
transferred to a 1.5 mL tube. After centrifugation (2,000 g for 2 min), around 950 µL clear
supernatant was transferred to a pre-weighed 1.5 mL plastic tube and dried with SpeedVac
concentrator (Thermo Fisher Scientific, Waltham, MA). Finally, the dry extracts were
weighed and dissolved in an appropriate amount of dimethyl sulfoxide (DMSO) to prepare
10 mg/mL stock solution and stored in a −20 ◦C freezer for future screening assays.

Determination of fungal species
Forty fungal isolates were randomly picked to evaluate the fungal library’s diversity. The
fungi were cultured with liquidmalt extract medium at RT for one week, andmyceliumwas
collected for DNA extraction using DNAzol (Thermo Fisher). Genomic DNA applied as
PCR templates were isolated using DNAzol Reagent following the manual (Thermo Fisher
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Table 1 PCR Primers for fungal ITS regions.

Primer name sequences rDNA region

ITS1F (F) CTTGGTCATTTAGAGGAAGTAA 18S
ITS2 (R) GCTGCGTTCTTCATCGATGC 5.8S
ITS3 (F) GCATCGATGAAGAACGCAGC 5.8S
ITS4 (R) TCCTCCGCTTATTGATATGC 28S
ITS86F (F) GTGAATCATCGAATCTTTGAA 5.8S
ITS86R (R) TTCAAAGATTCGATGATTCAC 5.8S

Scientific). To identify the fungal species, nuclear ribosomal ITS regions were amplified
by PCR with specific primers (Table 1) (Op De Beeck et al., 2014) using the following
approach: 94 ◦C 2 min; 94 ◦C 30 s, 55 ◦C 30 s, 72 ◦C 1 min, 35 cycles; 72 ◦C 5 min. The
amplified products were sequenced and blasted against the NCBI database to identify
fungal species (Raja et al., 2017).

Screening the fungal extract library to identify malaria transmission-
blocking candidates with ELISA assays
As described previously (Niu et al., 2015), the red blood cells (iRBC) infected by
Plasmodium falciparum (NF54 strain from MR4, Manassas, VA) were cultured in RPMI-
1640 medium (Life Tech, Grand Island, NY) supplemented with 10% heat-inactivated
(56 ◦C for 45 min) human AB+ serum (Interstate blood bank, Memphis, TN), 12.5 µg/mL
hypoxanthine and 4% hematocrit (O+ human blood) in a candle jar at 37 ◦C for 15-17
days. The medium was replaced every day to provide sufficient nutrients. Blood smears
stained with Giemsa (Sigma-Aldrich, St. Louis, MO) were used to examine parasitemia or
gametocytemia every other day under a light microscope. Then, the cells were collected and
washed three times with RPMI-1640 at 300× g for 4 m. The cell pellets were re-suspended
in PBST (PBS containing 0.2% Tween-20) and homogenized by ultra-sonication with six
cycles of 10 s pulse and 50 s resting on ice for each period. The lysates were centrifuged
at 8,000 g for 2 min to remove insoluble materials and cellular debris. With the iRBC
lysate and insect cell-expressed recombinant FREP1, the ELISA assay was used to screen
the fungal extract library to block FREP1-parasite interaction (Niu et al., 2015). A 96-well
ELISA plate was coated with 50 µL iRBC lysate (2 mg/mL protein) and incubated overnight
at 4 ◦C. After coating, the plate was blocked with 100 µL of PBS plus 0.2% bovine serum
albumin (BSA) per well for 1.5 hr at RT. After removal of the blocking solution, FREP1
(10 µg/mL) in blocking buffer (PBS plus 0.2% BSA) was added to each well, and 1 µL
fungal extract was taken from a 96-well plate containing 2 mg/mL crude extract dissolved
in DMSO in each well with a multiple-channel pipette and transferred to the ELISA plate,
then incubated for 1 hr at RT with gentle shaking. After washing three times with PBST, 50
µL rabbit anti-FREP1 polyclonal antibody (Niu et al., 2015) (diluted 1: 5,000 in blocking
buffer, 1 µg/mL) was added to each well and incubated for 1 hr at RT. About 50 µL alkaline
phosphatase-conjugated anti-rabbit IgG (diluted 1: 20,000 in blocking buffer) was added
to each well and incubated for 45 min at RT. The wells were washed three times with PBST
between incubations. After washing, each well was developed with 50 µL pNPP substrate
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(Sigma-Aldrich) until the colors were visible, and absorbance at 405 nmwas measured. The
functional FREP1 supplemented with 1 µL solvent (DMSO) was used as non-inhibition
control, and the heat-inactivated FREP1 (65 ◦C for 15 min) was used as a 100% inhibition
control.

Determination of the transmission-blocking activity of the fungal
extracts in mosquitoes
Following the previous protocol (Zhang et al., 2015), the 15- to 17-day old cultured
P. falciparum containing 2–3% stage V gametocytes were collected and diluted with new
O+ type human blood to get 0.2% stage V gametocytes in the blood. Then, the 150 µL
blood was mixed with the same volume of heat-inactivated AB+ human serum. Then,
3 µL candidate fungal extract in DMSO (10 mg/mL or 2 mg/mL) was mixed with 297
µL infected blood, the final fungal extract concentration in blood was 100 or 20 µg/mL,
respectively. SMFA was performed to feed about 100 3–5 days old An. gambiae G3 female
mosquitoes for 15 min, and the engorged mosquitoes were maintained with 8% sugar in a
BSL-2 insectary (28 ◦C, 12-h light/dark cycle, 80% humidity). The midguts were dissected
seven days post-infection and stained with 0.1% mercury dibromofluorescein disodium
salt in PBS for 16 min. The oocysts in midguts were counted under a light microscope. The
standard membrane feeding assays were conducted at least twice to confirm the results.

Screening the fungal extract library to identify antibiotics
A subset of fungal extracts, randomly selected, were tested for the antibacterial activity to
inhibit the growth of Shigella flexneri (ATCC 9199), Staphylococcus aureus (ATCC 14775),
methicillin-resistant Staphylococcus aureus (MRSA, ATCC BAA-44) and E. coli (AS17tolc).
The drug-screening was performed in a 384-well microplate format using the following
procedures. Bacteria were cultured in 50 mL Mueller Hinton broth (MHB) in a 150-mL
flask overnight at 37 ◦C. The next day, the cells were first OD600 adjusted to 0.1 and then
further diluted 1:100 in MHB, and a volume of 50 µL (∼105 CFU) is added to each well
of the 384-well sterile microplates (Thermo Fisher Scientific). Fungal extracts (0.5 µL
in DMSO) were then added to each test well at a final concentration of 40 µg/mL. The
plates were incubated for 18–20 hr at 37 ◦C. At the end of this incubation, resazurin
(Sigma-Aldrich) was added to the wells to determine the growth of bacteria. The final
concentration was 0.02%, and the plates were further incubated for 4-6 hr at 37 ◦C. In the
presence of viable cells, resazurin was reduced to resorufin (pink) along with an increase in
fluorescence (O’Brien et al., 2000). Extracts showing antibiotic activity (hits) were scored
as those that prevented the color change and also reduced the fluorescence (Ex 540, Em
590nm) by 90%when compared to the control wells containing no inhibitor. Ciprofloxacin
was used as a positive control for bacterial growth inhibition. Three wells were used for
each sample. For the positive candidate extracts, we repeated the experiments at least once
to confirm the results.

Niu et al. (2020), PeerJ, DOI 10.7717/peerj.10392 5/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.10392


Screening the fungal extract library to identify drugs leads against
chronic myeloid leukemia with MTT assays
Cell proliferation was analyzed by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide (MTT) using Vybrant R© MTT Cell Proliferation Assay (Thermo
Fisher Scientific) with the human immortalized myelogenous leukemia cell line K562.
Around 2 × 104 cells in 100 µL culture medium (RPMI 1640 + 2mM glutamine + 10%
fetal bovine serum) were seeded in 96-well microplates and incubated at 37 ◦C with 5%
CO2. The next day, one µL fungal extract in DMSO was added (final concentration of
the fungal extract was 20 µg/mL), and the cells were incubated at 37 ◦C with 5% CO2

for another 24 hr. Next, the microplate was centrifuged at 500 g for 10 min to pellet the
cells, the medium was carefully removed as much as possible, and 100 µL of fresh medium
was then added. About 10 µL of the 12 mM MTT stock solution was added, mixed, and
incubated for 4 hr at 37 ◦C. The microplate was centrifuged again at 500 g for 10 m. After
removing 75 µL of the medium from the wells with 25 µL medium with cells left, 50 µL
of DMSO was added to each well, mixed, and incubated at 37 ◦C for 10 min to dissolve
formazan crystal for measurement. The same amount of DMSO without drugs was applied
as a control. The optical density was measured at an absorbance wavelength of 540 nm. Cell
growth inhibition rate (%) = (A540 of control−A540 of treatment/ A540 of control)×100%.
Triplicates were conducted for each sample.

Statistical analysis
All the experiments were independently repeated at least twice and analyzed with the
Wilcoxon-Mann–Whitney test using GraphPad Prism (GraphPad Software, CA, USA).

Sequence availability
All fungal ITS sequences obtained in this project have been deposited into GenBank at
NCBI (https://www.ncbi.nlm.nih.gov/genbank/sequenceids/).

Construction of phylogenetic tree
Forty fungal ITS sequences in FASTA format were input into an online multiple sequence
alignment tool (https://www.ebi.ac.uk/Tools/msa/clustalo/) usingClustalOmega algorithm
(Higgins & Sharp, 1988). The parameter ‘‘DNA’’ was selected for input sequence and
‘‘ClustalW’’ was selected as output format. All other parameters were kept as defaults.
Multiple sequence alignment was conducted by clicking on ‘‘Submit’’. After alignment
was completed, the tab of ‘‘Phylogenetic Tree’’ was clicked and the checkbox ‘‘Real’’ was
selected for ‘‘Branch length’’ to visualize the phylogenetic tree. The phylogenetic tree was
saved as a pdf file through ‘‘print’’ under ‘‘File’’.

RESULTS AND DISCUSSION
Extensive fungal library with nearly ten thousand isolates
A large and diverse fungal library is powerful in discovering new drugs. To achieve this
goal, we collected samples globally. Current collection includes samples from Kenya,
Myanmar, USA, and China. We received about 2395 soil samples and 2324 plant samples.
We collected the whole plant or separated plant parts such as roots, stems, leaves, flowers,
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fruits, or various combinations of components. The samples were from 36 regions,
including Nairobi in Kenya, 10 regions in the United States, Yangon in Myanmar, and 24
districts in China (Table 2). The collection places cover various climate zones.

From these samples, 9,053 fungal isolates in total were cultured. Among them, 2,356
were from the plant samples, and 6,688 were from soil samples. About one fungal strain per
plant-part sample and 2.8 fungal isolates per soil sample were obtained by average. Nearly
69.4% of fungal isolates were from the subtropical climate in China (Shanghai, Guangzhou,
and Chongqing) and the USA (e.g., Dallas, NewOrleans, andOklahomaCity). About 8% of
fungal isolates were from tropical climates such as Miami in the USA, Yangon inMyanmar,
Kisumu in Kenya. Approximate 4% were from tropical/subtropical highland climate areas
such as Nairobi in Kenya, the Lijiang National Park, and the Potatso National Park in
China. A small portion (2.1%) was from the cold areas, such as Jiuzhaigou National Park in
China, and Alaska in the USA (Fig. 1A).We collected the samples from different landforms,
including hills, mountains, plateaus, canyons, valleys, and bays. Notably, some fungi were
isolated from samples collected from the mountains with an altitude over 3,000 m, such
as the Cang Mountains and Meili Snow Mountains in the Yunnan Province, China. The
vast difference of sample collection in location, weather, climate, and altitude (Fig. 1B)
promises the diversity of fungal species and their genetic background.

To maximize the diversity and quantity in our fungal library, we selected fungal colonies
based on their location, color, and morphology on culture plates. Therefore, the fungal
isolates in the library look strikingly different (Fig. 1C). This visible criterion facilitates the
fungal library construction.However, we also discardedmany fungi that are different species
with similar morphology. We examined the species diversity of our fungal library at the
molecular level by randomly picking 40 fungal isolates. Their genomic DNA was isolated,
the ITS regions were amplified, and PCR products were sequenced. These sequences have
been deposited into GenBank at https://www.ncbi.nlm.nih.gov/genbank/sequenceids/.
Their Accession numbers are MT594355–MT594393 and MT584204. We searched these
sequences against NCBI DNA databases using blast. Results show that about 12.5% of total
fungal isolates have identical ITS sequences to others in the library (Table 3). For instance,
126-G10, 117-B9, and 45-F10 have identical ITS to Fusarium solani, and 2 of 3 might be
duplicates. Strains 99-H5 and 78-D10 have identical ITS to Penicillium sclerotiorum. More
than 80% of fungal isolates belong to different species or strains, indicating the fungal
library is highly diverse. A small portion (<12.5%) are duplications of the other. Based on
these ITS sequences, a phylogenetic tree was constructed, displaying the fungal diversity
in samples (File S1). Three genera (Trichoderma, Fusarium and Penicillium) present in
three big branches, which is consistent to our sampling sources, e.g., soil and plants.
Trichoderma and Fusarium are the most prevalent soil fungi and many are associated with
plants (Harman et al., 2004). Penicillium is ubiquitous genus with more than 350 species
already identified (Visagie et al., 2014).

Endophytic fungi from Chinese medicinal plants
Our fungal library includes many endophytic fungi. Since endophytic fungi produce many
plant metabolites with medical functions, we collected plant samples from the three most
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Table 2 Fungal strains collected from different locations of the world.

# of isolates Area/City/County State/Province Country Continent

188 Norman Oklahoma USA North America
287 Oklahoma City Oklahoma USA North America
208 Stillwater Oklahoma USA North America
76 Dallas Texas USA North America
68 New Orleans Louisiana USA North America
59 Pensacola Florida USA North America
47 Tallahassee Florida USA North America
33 Lake City Florida USA North America
401 Miami Florida USA North America
119 Juneau Alaska USA North America
702 Nairobi NA Kenya Africa
322 Yangon NA Myanmar Asia
181 Shanghai NA China Asia
34 Beijing NA China Asia
39 Chongqing NA China Asia
1469 Foshan Guangdong China Asia
472 Guangzhou Guangdong China Asia
1093 South China

Botanical Garden
Guangdong China Asia

667 Taishan Guangdong China Asia
37 Zhongshan Guangdong China Asia
45 Jiangmen Guangdong China Asia
14 Maoming Guangdong China Asia
351 Shaoguan Guangdong China Asia
34 Shenzhen Guangdong China Asia
356 Laibin Guangxi China Asia
54 Liuzhou Guangxi China Asia
39 Rongan Guangxi China Asia
808 Zhongshan Guangxi China Asia
46 Qinzhou Guangxi China Asia
135 Lijiang Yunnan China Asia
94 Cang Mountain Yunnan China Asia
254 XishuangbannaTropical

Botanical Garden
Yunnan China Asia

77 Potatso National Park Yunnan China Asia
50 Tongzi Guizhou China Asia
38 Jiuzhaigou National Park Sichuan China Asia
132 Xinglong Tropical

Botanical Garden
Hainan China Asia

3 Hohhot Inner Mongolia China Asia
21 Changzhi Shanxi China Asia
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Figure 1 Worldwide localization of samples, distribution of collected fungi in different climate
zones, and some fungal morphology. (A) Samples were collected worldwide, indicated by red dots. (B)
Distribution of the collected fungi in different climates zones. The climate classification was based on
the Köppen–Geiger Climate Classification. The codes of the climate are as the following: Aw: Tropical
monsoon climate; Bsk: Cold semi-arid climate; Cfa: Humid subtropical climate; Cfb: Temperate oceanic
climate; Cwa: Monsoon-influenced humid subtropical climate; Cwb: Subtropical highland climate or
Monsoon-influenced temperate marine climate; Dfb: Humid continental climate; Dwa: Monsoon-
influenced hot-summer humid continental climate; Dwb: Monsoon-influenced warm-summer humid
continental climate. (C) Morphology of some isolated fungal colonies in the library.

Full-size DOI: 10.7717/peerj.10392/fig-1
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extensive tropical botanic gardens in China, including South China, Hainan Xinglong,
and Yunnan Tropical. There are many diverse plants in these gardens. We collected 27
well-known Chinese medicinal plants, such as Chinese black olive (Canarium pimela),
Chinese croton (Excoecaria cochinchinensis), Lemon-scented gum (Eucalyptus citriodora
Hook), Sweet osmanthus (Osmanthus fragrans), and Yellow cow wood (Cratoxylum
cochinchinense) (Table 4). We separated different parts from each plant, e.g., leaf, bark,
stem, fruits, and seeds, and sterilized their surfaces with 75% ethanol. Following grinding
masses and culturing on Malt Extract Agar (MEA) plates, more than 50 endophytic fungi
were isolated on MEA plates. The colors and morphology of these endophytic fungi
and their corresponding plants look strikingly different (Fig. 2). The ITS of three fungi
were PCR-amplified and sequenced (Accession # in GenBank are MT994711, MT994712,
and MT594489). They were identified as Stephanonectria keithii (Fig. 2C), Aspergillus sp.
(Fig. 2E), and Tolypocladium album (Fig. 2Z), respectively.

Construction of a fungal extract library
To generate a fungal metabolite library, we used the cereal-based medium to produce the
secondary metabolites as reported (Niu et al., 2015). Each fungus was cultured in a test
tube with six small pieces of cereals. After culturing for one month, we used ethyl acetate to
extract the secondary metabolites. We obtained 9,053 crude extracts in total, each of which
corresponds to a specific fungal isolate. As anticipated, different fungal strains produced
different amounts of secondary metabolites from 1 mg to 20 mg per gram culture, and
have various physical features such as stickiness, odors, and solubility. More than 90% of
the extracts have colors, including green, orange, red, yellow, purple, and others. The crude
extracts were dissolved in DMSO to generate 2 mg/mL solution. For future reference, we
named this library ‘‘Global Fungal Extract Library’’ or GFEL in brief.

Screen the fungal extract library against P. falciparum transmission
to mosquitoes
Malaria remains a devastating disease, and Anopheles midgut protein fibrinogen-related
protein 1 (FREP1) mediates Plasmodium transmission (Li et al. 2013; Zhang et al., 2015;
Niu et al., 2017). FREP1 mediates Plasmodium invasion in mosquitoes by binding to
P. falciparum gametocytes or ookinetes (Zhang et al., 2015).

To examine the usability of the newly constructed fungal library, we screened 460
fungal extracts obtained in later 2016 and early 2017 for their inhibition activity against
FREP1-P. falciparum interaction and found 4 extracts that prevented FREP1 from binding
to P. falciparum lysates by over 90%. The fungal colonies of these four fungal candidates
on MEA plates showed different colors and shapes (Figs. 3A–3D). Then, we determined
the activities of the four candidates against P. falciparum to An. gambiae in vivo using the
standard membrane feeding assays (SMFA). Results show that the fungal extracts of 37C6
and 22E8 could block malaria transmission at a concentration of 100 µg/mL, and 100D3
and 45F10 did not (Fig. 3E, File S2). The oocyst numbers of 37C6 or 22E8 extract-treated
mosquitoes were nearly zero, while the oocyst numbers in the 100D3 or 45F10 extract-
treatedmosquitoes were not significantly different from that of theDMSO control (Fig. 3E).
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Table 3 The species of randomly sampled fungi from the library.

ID Species Length Coverage Identity Source Sample location

11-A5 Acremonium cellulolyticus 581 100% 100% soil Guangxi, China
S3/2 Albifimbria verrucaria 582 98% 100% soil Guangdong, China
116-E12 Arthropsis hispanica 455 100% 100% soil Florida, USA
4-H9 Ascomycota sp. 586 100% 100% plant Guangdong, China
64-A1 Aspergillus flavus 597 100% 100% plant Oklahoma, USA
79-B7 Aspergillus sp. 574 100% 100% soil Guangdong, China
49-G11 Aspergillus sydowii 569 100% 100% air Guangdong, China
58-C1 Aspergillus sp. 621 92% 77% soil Guangdong, China
3-D7 Cylindrocladium sp. 575 100% 99% soil Guangdong, China
24-C5 Debaryomyces subglobosus 634 100% 100% soil Guangdong, China
116-H3 Epicoccum sorghinum 589 100% 100% plant Guangxi, China
88-E10 Fusarium kyushuense 540 95% 100% soil Guangdong, China
126-G10 Fusarium solani 573 100% 100% soil Guangxi, China
117-B9 Fusarium solani 576 100% 100% soil Florida, USA
45-F10 Fusarium solani 573 100% 100% soil Guangdong, China
3-F5 Fusarium verticillioides 562 100% 100% soil Guangxi, China
18-F5 Trichoderma sp. 619 99% 92% plant Hainan, China
66-B4 Metarhizium sp. 617 100% 99% soil Yunnan, China
17-A1 Mycosphaerella sp. 573 100% 100% soil Alaska, USA
HW Neurospora sp. 586 100% 99% air Guangdong, China
74-F11 Penicillium rolfsii 591 99% 100% soil Guangdong, China
99-H4 Penicillium sclerotiorum 586 100% 100% plant Guangxi, China
78-D10 Penicillium sclerotiorum 583 100% 100% soil Guangdong, China
81-D8 Penicillium sp. 575 100% 99% soil Guangdong, China
107-H3 Penicillium soppii 470 100% 100% soil Alaska, USA
125-B10 Penicillium sp. 589 100% 100% soil Guangdong, China
114-D12 Penicillium sp. 584 100% 100% plant Yangon, Myanmer
3-G10 Talaromyces stipitatus 582 100% 100% soil Guangxi, China
37-A6 Trichoderma sp. 612 83% 86% plant Guangdong, China
95-C6 Trichoderma sp. 571 100% 99% soil Guangxi, China
45-G11 Trichoderma atroviride 629 100% 100% soil Guangdong, China
CL Trichoderma sp. 612 100% 99% soil Maasi Marla, Kenya
16-D5 Trichoderma harzianum 625 100% 100% soil Guangdong, China
100-D3 Trichoderma sp. 554 100% 99% soil Guangdong, China
104-D12 Trichoderma harzianum 623 100% 100% soil Guangxi, China
98-C8 Trichoderma sp. 610 100% 99% soil Guangxi, China
80-G9 Trichoderma sp. 622 100% 99% soil Guangdong, China
114-G8 Trichoderma sp. 617 100% 99% soil Guangdong, China
117-H9 Trichoderma harzianum 624 100% 100% soil Florida, USA
121-G6 Metarhizium carneum 172 100% 100% plant Hainan, China
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Table 4 Some fungal strains isolated from Chinese medicinal plants.

ID Sample collection location Medical plant/tissue Family Species

12A7 SCBG, Guangzhou, China Chinese black olive/stem Burseraceae Canarium pimela
30F12 SCBG, Guanzhou, China Devil’s Trumpet/leaf Solanaceae Datura metel
32F1 SCBG, Guanzhou, China Japanese lantern Malvaceae Hibiscus schizopetalus
38H8 SCBG, Guangzhou, China Sweet osmanthus/leaf Oleaceae Osmanthus fragrans (Thunb)
42B7 SCBG, Guangzhou, China Lemon-scented gum/bark Myrtaceae Eucalyptus citriodora Hook.f
44G1 SCBG, Guangzhou, China Sausage Tree/leaf Bignoniaceae Kigelia africana (Lam.) Benth.
44G9 SCBG, Guangzhou, China Chinese croton/leaf Euphorbiaceae Excoecaria cochinchinensis
71G5 SCBG, Guangzhou, China Maytenus hookeri Loes/leaf Celastraceae Maytenus hookeri Loes.
71G11 SCBG, Guangzhou, China Siris tree/leaf Fabaceae Albizia lebbeck
74E7 SCBG, Guangzhou, China Yellow cow wood/leaf Hypericaceae Cratoxylum cochinchinense
74E10 SCBG, Guangzhou, China Dracontomelon duperreanum/leaf Anacardiaceae Dracontomelon duperreanum
35H11 SCBG, Guangzhou, China Harland boxwood/leaf Buxaceae Buxus microphylla
9D1 HXTBG, Haikou, China Sisal/leaf Asparagaceae Agave sisalana
9H3 SCBG, Guangzhou, China Candlenut/leaf Euphorbiaceae Aleurites moluccanus
9H7 SCBG, Guangzhou, China Kadsura vine/leaf Schisandraceae Kadsura japonica
21B3 SCBG, Guangzhou, China Castor oil plant/fruit Euphorbiaceae Ricinus communis
29A7 SCBG, Guangzhou, China Soft bollygum/leaf Lauraceae Litsea glutinosa
37E10 SCBG, Guangzhou, China Sweet osmanthus/leaf Oleaceae Osmanthus fragrans
79A7 HXTBG, Haikou, China Thyme/leaf Lamiaceae Thymus mongolicus Ronn
79A11 Taishan, China Sterculia nobilis/leaf Malvaceae Sterculia nobilis Smith
79F5 SCBG, Guangzhou, China Milk tree/leaf Moraceae Ficus hispida L. f.
82C1 HXTBG, Haikou, China Sessileflower/leaf Araliaceae Acanthopanax gracilistylus
72E3 SCBG, Guangzhou, China Trumpet tree/leaf Urticaceae Cecropia peltata
81F7 SCBG, Guangzhou, China Callicarpa brevipes/fruit Lamiaceae Callicarpa brevipes
78A11 SCBG, Guangzhou, China bollygum /leaf Lauraceae Litsea glutinosa
78A10 SCBG, Guangzhou, China African oil palm/leaf Arecaceae Elaeis guineensis
126H5 HXTBG, Haikou, China Giant crepe-myrtle/bark Lythraceae Lagerstroemia speciosa

Notes.
SCBG, South China Botanical Garden; HXTBG, Hainan Xinglong Tropical Botanical Garden.

After further dilution of the two positive candidate fungal extracts (37C6 and 22E8) to
20 µg/mL, we found that the extract of 22E8 still significantly inhibited the activity in P.
falciparum transmission to mosquitoes (Fig. 3F, File S2). We sequenced the ITS sequences
of the four candidate fungi and their accession number are MT594486–MT594488 and
MT613342 at GenBank at https://www.ncbi.nlm.nih.gov/genbank/sequenceids/. According
to ITS sequences of 22E8 (Acc #: MT613342) and 37C6 (Acc#: MT594487), the fungal
species of 22E8 and 37C6 were Penicillium thomii and Penicillium pancosmium, respectively
(Table 5). Notably, this is the first report about P. thomii and P. pancosmium that produce
secondary metabolites with antimalarial activities. An independent project in our lab
identified Asperaculane B as an active compound from this GFEL that inhibited malaria
transmission to mosquitoes (Niu et al., 2020).
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Figure 2 The fungal isolates and the corresponding Chinese medicinal host plants. The images in A–I,
S–AA and JJ–SS were the fugal isolates grown on MEA plates, and the photos below in J–R, BB–II and TT–
BBB are the corresponding host plants where they were isolated.

Full-size DOI: 10.7717/peerj.10392/fig-2

Examine the usability of fungal extract library in finding antibiotic
leads
Antibiotic-resistant bacteria threaten public health (Todd, 2017). We screened potential
antibiotics from this newly established fungal library against antibiotic-resistant bacterial
pathogens. We randomly picked 574 fungal extracts and examined their activity in
inhibiting Gram-positive (methicillin-resistant S. aureus MRSA) and Gram-negative
(S. flexneri) bacterial pathogens. These fungi were isolated from samples collected in late
2017. Among them, 47 inhibited the growth of S. aureusMRSA (hit rate of 10.8%), and one
inhibited the growth of S. flexneri (hit rate of 0.17%, Table 6). The hit rate of antibiotics
against Gram-positive bacteria was higher than that of the Gram-negative bacteria, which
is consistent with the well-known challenges in antibiotic discovery against gram-negative
pathogens. Gram-negative pathogens have unique outer membrane and efflux pumps (Fair
& Tor, 2014).

We also examined the effect of 288 fungal extracts on non-methicillin-resistant S. aureus.
The results showed that 22 prevented the growth of non-methicillin-resistant S. aureus
(hit rate of 7.6%). Besides, we analyzed another two featured bacteria, Mycobacterium
smegmatis, which is gram-positive and has acid-fast dye staining cell wall, and E. coli-
AS17tolc, which has gram-negative cell wall, but more permeable than the wild type E.
coli. We obtained eight candidates against Mycobacterium smegmatis and three candidates
against E. coli-AS17tolc. The results showed 10.8% and 1% hit rates to Mycobacterium
smegmatis and E. coli-AS17tolc, respectively (Table 6 and File S3). The results show that
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Figure 3 The transmission-blocking activity of the extracts candidates by screening the fungal library
with the in vitro FREP1-parasite interaction-based ELISA assays. (A–D) The morphology of fungal iso-
lates 37C6, 100D3, 22E8T, and 45F10 on the MEA agar plate. (E) The final concentrations of the fungal
extracts were 100 µg/mL and the results show that the fungal extracts (37C6 and 22E8) significantly re-
duced the oocyst number compared with the DMSO control while the oocyst number of the other two
(100D3 and 45F10) was not significantly different with the DMSO control, respectively. (F) Further, the
fungal extract of 22E8 continued to show a significant reduction of the oocyst number in midgut while
the 37C6 fungal extract did not have significant effects on P. falciparum infection in mosquitoes when the
concentration of the fungal extracts was decreased to 20 µg/mL. N: the number of mosquitoes for each
treatment;mean: the average number of oocysts per midgut; PR: infection prevalence in mosquitoes. p:
the p-value was calculated by the Mann-Whitney-Wilcoxon test. The experiments were repeated three
times.

Full-size DOI: 10.7717/peerj.10392/fig-3
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Table 5 The fungal strains producing metabolites that inhibited malaria transmission.

aTransmission blocking activity (%)

ID Fungal species Access No 100µg/mL 20µg/mL

22E8 Penicillium thomii MT613342 99.4 44.9
100D3 Trichoderma harzianum MT594486 NS NS
37C6 Penicillium pancosmium MT594487 99.3 NS
45F10 Fusarium solani MT594488 NS NS

Notes.
aThe transmission-blocking activity was calculated with the equation: (the mean oocyst number of the control group—the
mean oocyst number of the treatment group)/the mean oocyst number of the control X100%.
NS, Not significant.

Table 6 Antibiotic screening results show the positives and hit rates to various bacteria.

Mycobacterium
smegmatis

Staphylococcus
aureus (WT)

Staphylococcus
aureus (MRSA)

Shigella
flexneri

E.coli
(AS17tolc)

Total extracts screened 574 288 574 574 288
Number of positive hits 62 22 47 1 3
Hit rate (%) 10.8 7.6 8.2 0.17 1

the secondary metabolites produced by different types of fungi in the GFEL contained
biologically active compounds against drug-resistant and pathogenic strains of bacteria.

Examine the usability of fungal extract library in finding anti-chronic
myeloid leukemia candidates
Finally, we studied the possibility of obtaining drug candidate leads against chronic
myelocytic leukemia (CML), a malignant tumor of the blood system (Kaleem et al., 2015).
A small subset of endophytic fungi from Chinese medicinal plants was used for this
purpose. Fifty extracts were examined for their inhibition against the human immortalized
myelogenous leukemia cell line K562 using the MTT method. The final concentrations of
crude extracts were 20 µg/mL. The results from triplicates showed that 4 extracts (#17, #22,
#29, #35) significantly inhibited the proliferation of K562 cells (p< 0.05, Fig. 4, File S4).
The hit rate of the plant-fungal metabolite library was 8%. Notably, the survivorship of
K562 cells with extract #29 was about 24.8% compared with the control, e.g., the inhibition
of extract #29 on K562 proliferation was as high as 75.2%. The specimen of #29 was from
the fungus (Fig. 2Z) isolated from the plant Litsea glutinosa (Fig. 2HH) collected from
the Medical Botanical Garden of South China Botanical Garden in Guangzhou. Litsea
glutinosa has been used to treat diarrhea, traumatic injuries, mumps, and rheumatism. It
contains abundant flavonoids, terpenes, and alkaloids, and has good antibacterial activity,
immunomodulatory effect, and anti-tumor effect. We PCR-amplified the ITS region of
the fungal candidate (#29) and sequenced the region. Based on the ITS region sequence
(Accession # at GenBank: MT594489), the candidate fungus was Tolypocladium album.
Notably, a tetrameric acid from Tolypocladium album has been reported to inhibit the
tumor’s growth (Fukuda et al., 2015). Further studies will be conducted to isolate and
identify the bioactive compounds from this fungus.
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Figure 4 Anti-chronic myeloid leukemia screening results. About 50 extracts of endophytic fungi iso-
lated from the Chinese medicinal plant-fungal metabolite library were examined against K562 cells using
the MTT method. The results show that 4 extracts (#17, #22, #29, #35) significantly inhibited the growth
of K562 cells (p < 0.05). Notably, the survivorship of K562 cells with extract #29 was about 24.3% com-
pared with the control, or the inhibition of extract #29 on K562 was 75.7%. DMSO was applied as the con-
trol. The data shows the means and standard deviations of triplicates.

Full-size DOI: 10.7717/peerj.10392/fig-4

CONCLUSIONS
We established a comprehensive fungal library that is diverse and useful for the scientific
communities. We also demonstrated the usability of GFEL and identified a set of
fungal strains that produce secondary metabolites to inhibit Plasmodium falciparum’s
transmission, chronic pneumonia development, and bacteria proliferation. Further studies
will identify the active compounds for drug development.
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