
Hindawi Publishing Corporation
Journal of Insects
Volume 2013, Article ID 685182, 9 pages
http://dx.doi.org/10.1155/2013/685182

Review Article
Chemical Cues for Malaria Vectors Oviposition Site Selection:
Challenges and Opportunities

Yousif E. Himeidan,1 Emmanuel A. Temu,2 El Amin El Rayah,3

Stephen Munga,4 and Eliningaya J. Kweka5,6

1 Entomology Unit, Faculty of Agriculture and Natural Resources, University of Kassala, P.O. Box 266, Kassala, New Halfa, Sudan
2 Tropical Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
3Department of Zoology, University of Khartoum, P.O. Box 321, 1115 Khartoum, Sudan
4Centre for Global Health Research, Kenya Medical Research Institute, P.O. Box 1578-40100, Kisumu, Kenya
5 Tropical Pesticides Research Institute, Division of Livestock and Human Diseases Vector Control, P.O. Box 3024, Arusha, Tanzania
6Department of Medical Parasitology and Entomology, School of Medicine, Catholic University of Health and Allied Sciences,
P.O. Box 1464, Mwanza, Tanzania

Correspondence should be addressed to Eliningaya J. Kweka; pat.kweka@gmail.com

Received 25 August 2013; Accepted 19 October 2013

Academic Editor: Bruno Arcà
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The attractiveness of oviposition site for malaria vector mosquitoes is dependent upon a number of physical and chemical factors.
Many aspects of mosquito behavior, including host location and oviposition, are mediated by volatile semiochemicals. It is
anticipated that selection of oviposition site by semio-chemicals in the form of attractants or stimulants can be used in oviposition
traps to monitor or possibly in combination with insecticides to control gravid mosquito populations for mass trapping. So far,
volatile compounds identified as oviposition attractants for mosquitoes include phenol, 4-methyl phenol, 4-ethyl phenol, indole,
skatole, and p-cresol from hay infusions; 3-carene, 𝛼-terpinene, 𝛼-copaene, 𝛼-cedrene, and d-cadinene released by copepods;
alcohol and terpenoids including p-cresol from plants; ethyl acetate and hydrocarbon substances, probably released by filamentous
algae; 3-methyl-1-butanol identified frombacteria. Research priorities should be directed at identifyingmore oviposition attractants
to determine the properties of these semio-chemicals for possible use in designing control tools. This would aim at luring females
to lethal traps or stimulants to increase their exposure to insecticide-impregnated substrates.

1. Background

Malaria is one of the most significant and debilitating insect-
transmitted humandiseases and has infected humans for over
thousand years andmay have been a human pathogen for the
entire history of mankind [1]. Today, malaria causes about
225 million cases of fever and approximately 600,000 deaths
annuallymore specifically in children under age of 5 years [2].
This represents at least one death (child) every 39 seconds and
85–90% of the deaths occur in sub-Saharan Africa [2].

Mosquitoes spend the first part of their lifecycle in aquatic
habitats [3]. The choice of an appropriate oviposition sites
has significant impact on the fitness of progeny, distribution

of larvae, population dynamics, and the overall maternal
reproductive fitness and success [4, 5]. Oviposition process
requires complex integration of physical and chemical cues
by gravid mosquitoes. Long-range cues, probably involv-
ing vision, allow mosquitoes to identify different habitats
and oviposition site characteristics. As mosquitoes approach
an oviposition site other cues such as phenol, 4-methyl
phenol, 4-ethyl phenol, indole, skatole, and p-cresol from
hay infusions; 3-carene, 𝛼-terpinene, 𝛼-copaene, 𝛼-cedrene,
and d-cadinene become important. Once oviposition site is
identified, short-range cues become increasingly important.
Short-range cues include temperature and chemical signals
received by contact chemoreceptors [6].
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Electrophysiological studies have demonstrated that as
the blood meal is digested in Aedes aegypti, neurons sen-
sitive to host-produced cues, such as lactic acid, become
less sensitive, while neurons sensitive to oviposition site
attractants, such as methyl butyrate, become more sensitive
[7]. Understanding oviposition sites is therefore important to
behavioral and vector ecologists because of its potential use
in developing successful vector control strategies for insect-
borne infectious diseases [8]. A comprehensive knowledge of
variations in oviposition behaviors and identification of their
determinants that can be used as a repellant or attractant is a
key step in this process.

2. Mosquito Oviposition Site Selection

2.1. Role of Habitat Characteristics. Oviposition site selection
is the net result of the interaction of a complex array of
both chemical and physical factors. The potential breeding
sites of anopheline mosquito vectors differ in a range of
characteristics, both biotic and abiotic [9, 10]. Anopheline
mosquitoes, particularly An. gambiae s.l., actively select
habitats for enhancing survivorship and development of
immature stages [11]. The source of these physical and
chemical signals associated with these breeding sites act as
important mediating factors.

The characteristics of potential breeding sites either singly
or synergistically influence oviposition of gravid mosquitoes
[12]. This occurs through several sensor factors including
olfactory [13], tactile, temperature, chemical, and visual cues
[6, 14]. Chemical cues may be sensed before physical contact
with the site, or they may be sensed upon contact [15] and
may emanate from a variety of sources, including microor-
ganisms; mosquito eggs, larvae, or pupae; decomposing
organic materials; microbes of larval breeding water and
predators or competitors, whether vertebrate or invertebrate
[5, 6, 16–23]. Physical characteristics of water collections and
their surroundings are assessed by gravid females for long-
range identification of potential breeding sites, including
color, optical density, reflectance, and temperature [24–26].
Certain physical factors influencing oviposition of Anopheles
gambiae Giles are color/contrast of the substrate, water type,
vegetation, presence of microorganisms, substrate moisture,
and texture [16, 27, 28].

The overall complex set of signals that are present in
such breeding habitat and are used by An. gambiae to locate
preferred oviposition site act in two contradictory ways.
Whereas such habitats exert a “pulling” effect, unsuitable
pools may exert an active “pushing” effect, and it is the
integrated “push/pull” effects of these different signals that
may effectively guide an insect to a habitat suitable for its
species [3]. Previous studies designed to clarify the types
of signals that mediate the attraction of An. gambiae to
specific pools demonstrated mediation of several signals [21,
29]. Volatiles associated with the microbial population in
preferred anopheline pools were found to be important initial
interspecific attractants [21]. In general, two intraspecific sig-
nals were shown to regulate oviposition: a volatile pheromone
and a contact deterrent associated with the larval stages of

the mosquito [29].This pair of signals may play an important
role in fine-tuning the balance between the exploitation of
a suitable breeding site and the avoidance of intra-specific
competition and other effects of overcrowding [3, 29–33].

Attractant and repellent compounds for mosquitoes
oviposition, including anopheline, have been identified from
several sources such as hay infusion [18, 34], water-associated
bacteria [21, 35, 36], mosquito oviposition and larvae holding
water, pheromones [6, 21, 29, 37], and exudates from aquatic
competitors or predators [13, 38]. The different sources of
stimuli result in patterns of distribution of immature-stage
mosquitoes that reflect differences in the suitability of sites for
the development of different species [29, 39]. Understanding
this point is not only important for its potential in developing
a new strategy, but also important in terms of targeting larval
control. Here below are the main sources and substances
mediating habitat selection that acts as repellent or attractants
to gravid mosquitoes.

2.2. Immature Stages Conspecific. Gravid mosquitoes may be
attracted to habitats with conspecific larvae, because presence
of conspecific larvae may indicate suitable habitats for the
species [21, 40, 41]. Conspecific attraction has been described
as a means for females to exploit information collected
by other females. Rather than gathering information on
a multitude of environmental factors potentially affecting
offspring growth, a process constrained by energy, time,
and/or sensory capabilities, females may be able to quickly
assess habitat suitability by sensing the reproductive success
of previous females [42]. Interestingly, conspecific attraction
has been observed across numerous animal taxa [26, 43–45],
such as birds, mammals, reptiles, fish, and insects, including
othermosquitoes [19, 46]. ForAe. aegypti, attraction of gravid
females to containers with immature conspecifics may seem
at first counter-productive [47]. These habitats previously
released olfactory cues which have attracted the first gravid
mosquito and subsequently the offspring colonised the habi-
tats. Thus it is evident that habitats have potential olfactory
cues for more gravid to oviposit with substantial ability to
support the larvae developmental needs.

In large laboratory cages, when given choices gravid
females of An. gambiae s.l., deposit more eggs in turbid water
from natural larval habitats than in clear water [28]. On the
other hand, previous studies have shown that habitat water
with debris has more larvae and more emerging adults. A
plausible reason is that debris is potential food source for
the larvae of An. gambiae s.l. [48]. In other studies, the
number of eggs laid by the female An. gambiae s.l. during
the peak oviposition time has been demonstrated to be
affected by the suitability of the habitat resource types [16,
27, 49]. Both laboratory-reared and wild-caught mosquitoes
of An. gambiae s.l. have been shown to significantly prefer
anopheline habitat water to the culicine habitat water [21].
In two studies involving An. gambiae s.s., Brandon and
others demonstrated that, the larval rearing water of the
different mosquito strains produced a signal that yielded a
positive oviposition response from An. gambiae s.s. gravid
females of the same region (strain) [14].This not only implies
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the presence of conspecific attractant but also could be a
model for how speciation could arise within related taxa of
mosquitoes [14].

Aedes atropalpus is a rock-pool breeder that utilizes the
same temporary sites repeatedly in nature. In laboratory
experiments, this species preferentially oviposited signifi-
cantlymore eggs inwater that had previously held conspecific
larvae than in distilled water indicating that the attractive
substance was probably a pheromone [50]. The apparent
stability and low volatility of the active substance would be
advantageous in this habitat; the substance can remain active
over long periods and can be reconstituted after the drying
and subsequent reflooding of the rock pools. The larvae-
produced activity remained both when the larvae were first
purged with kaolin and when the water containing larvae
was microfiltered. The active substance resulted in greater
egg deposition only when the females came in contact with
the solution. Thus it was a contact stimulant rather than an
attractant [6].

Conspecific reflects a trade-off between the risk of
choosing an unsuitable habitat and the cost of intraspecific
competition [5, 30, 32]. For example, larval density can affect
site selectivity. Rearing water of higher larval density (900
larvae per liter) was repellent to ovipositing An. atropalpus
females reared under axenic conditions [51]. In a previ-
ous study, An. gambiae s.s. laid significantly more eggs in
containers with low larval density than in containers with
higher densities [13]. Probably, this is because those high
larval densities negatively influenced several components of
anopheline mosquito fitness, including larval survivorship
[52], development rate [53], adult lifespan [53], adult size
[31, 54], and female fecundity [54–56]. From this standpoint,
it would seem advantageous for ovipositing females to view
conspecifics as competitors to their own progeny [47].

Such threshold of larval density has been demonstrated
withAe. aegypti as well. Laboratory assays have demonstrated
a dose-specific oviposition response that increased with con-
specific densities up to 1 larva/mL and decreased thereafter
[35–37]. An. gambiae s.s. laid significantly more eggs in
containers with five larvae than in containers with higher
densities (more than 50) [13]. It has been suggested that, at
least with Ae. aegypti, a small portion of female population
may act as “founders” [57], choosing noncolonized sites based
on environmental indicators of quality, whereas the majority
of females respond predominantly to conspecific cues [47].
This could be true with An. gambiae s.l. despite the fact
that both females have been reported to be using multiple
breeding sites for oviposition [58, 59]. This seemed to occur
within a distance of few meters and mainly due to increasing
the chance of reducing the risk of progeny failing to develop
into adult stage [60].

2.3. Vegetation Volatiles. Middle-range volatiles from plants
may function as chemical cues for the female’s oviposi-
tion response in Anopheles mosquito species. In general,
vegetation as visual cues evidently influenced oviposition
on soil or water substrates. For example, while Anopheles
funestus breeds mainly in marshes and swamps that contain

tall grasses, Anopheles hermsi increased with increase in the
density of aquatic macrophytes (Myriophylluy maquaticum)
up to 1,000 stems per m2 [24, 61]. Some anopheline species
generally prefer to lay eggs in habitats associated with
vegetation. Given a choice, Anopheles minimus s.l. prefer to
oviposit their eggs where plants are present compared to sites
with bare soil. Small-leaved plants were significantly more
attractive to ovipositing female of this species compared to
habitats with grasses [62].

Anopheles gambiae Giles s.l. has been thought to avoid
stagnant water populated with vegetation. This is likely
not accurate as the species has been found to deposit
eggs in rice fields at all stages of vegetative maturity [63].
Fillinger et al. [64] have strongly challenged the idea that
An. gambiae avoids habitats with emergent vegetation like
grasses. Minakawa et al. [11] provided evidence that An.
gambiae is commonly found in association with grasses,
but it was not clear whether presence of larvae in such
habitats results from hatched eggs laid on or around wet
grasses, orwhether larvaewere carried there by flowingwater.
This question has been addressed in laboratory oviposition
choice experiments by Huang et al. [65]. They found that An.
gambiae s.l. females preferred to lay their eggs on bare wet soil
rather than on soil populated with grasses. However, in no-
choice experiments, when typical puddles over bare soil are
unavailable, An. gambiae s.l. has the capacity to oviposit into
grassy aquatic habitats and short grasses were more preferred
than medium and tall ones [48, 66].

However, some plant species may act as specific attrac-
tants more than others. For example, a strong positive asso-
ciation has been found between An. Albimanus Wiedemann
larval abundance and specific vegetation forms of water
containing Brachiaria mutica, Cynodon dactylon, Jouveas-
traminea, Fimbristylis spadicea, andCeratophyllumdemersum
[38, 67, 68]. This suggested that females of this species may
be using cues from these plants to select suitable places to
lay their eggs. This has been addressed by an experiment
conducted in a wind tunnel and indicated that gravid female
ofAn. albimanus response is mediated by chemical cues from
these plants. Gas chromatography and mass spectrometry
analysis of the organic extracts from these plants showed
a mixture of terpenoid and alcohol compounds, among
them: guaiacol, phenol, isoeugenol, longifolene, caryophyl-
lene, phenyl ethyl alcohol, and p-cresol [67].

2.4. Moisture Content. Hydration is one of the critical ovipo-
sition site selection qualities for An. gambiae s.l. [27]. In
a previous study, a strong positive correlation was found
between moisture content and the degree of egg laying,
which peaked at saturation with standing water [27]. It has
been indicated that these species prefer flooded soil over dry
or moist soil as oviposition substrate under the insectary
environment. However, when flooded oviposition substrates
were removed, females laid all eggs on moist soil substrates
[69]. Besides, anopheline eggs remain viable only on wet
substrates [24] and gravid females often choose a moist
surface to oviposit their eggs in the laboratory and in the field
[16, 65, 70]. In general,An. gambiae females are very sensitive
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to small changes in moisture while choosing an oviposition
site [27]. Probably, this is because these eggs cannot tolerate
prolonged desiccation, an observation not applicable to
some mosquitoes, for example, Aedes and Ochlerotatus [24].
Survivorship of An. gambiae s.l. eggs in drying soils held in
a laboratory was found to be inversely related to time after
deposition; that is, very few eggs in drying soils hatched after
12–15 days upon reflooding [71]. It has been suggested that the
egg stage of An. gambiae s.l. might contribute to the short-
term survival of this vector during dry periods in natural
conditions [71].This has further been confirmed in laboratory
experiment in which high temperature was found to cause
egg mortality [16]. This study concluded that moist mud
around puddles constitutes suitable habitat for An. gambiae
s.l. eggs; however, eggs on the surface of dry soil under direct
sunlight are unlikely to survive for more than a few hours.

2.5. Predator’s Kairomones. There are growing lines of evi-
dence that a number of mosquito species detect some preda-
tors via chemical cues, causing them to avoid these predators
when choosing an oviposition site [13, 19, 30, 41, 72–81]. In
general, chemical cues play an important role in predator
prey interactions in aquatic environments [82–85]. Predator-
released kairomones may induce morphological changes in
prey [80, 81], foraging changes by prey [86], and behavioral
responses of gravid prey females via oviposition habitat
selection [87]. Several studies have shown that mosquitoes
chemically detect and avoid backswimmer species when
ovipositing An. gambiae s.l. species [30, 74]. Munga et al. [13]
demonstrated that cues from backswimmers and tadpoles
influenced selection of oviposition site by gravidAn. gambiae
s.l. in cages. These results suggested that gravid mosquitoes
avoid habitats containing competitors and predators to
reduce the risk of mortality of offspring and this behavior is
probably one of the mechanisms causing the heterogeneous
distribution of An. gambiae s.l. larvae [88].

However, little is known about how malaria vector fe-
males detect predator-released kairomones in breeding sites,
and no such kairomones have been chemically identified.
In general, mosquitoes may detect chemicals from the air
when the chemical possesses sufficient volatility or, in the
case of low volatility chemicals, by a gustatory mechanism
involving direct contact with the water [89]. It has been
demonstrated that ovipositing Culiseta longiareolata female
in study site here was deterred from continuing to the central
pool, without any direct contact, when predator-released
volatile compound(s) emanated from the surrounding chan-
nel [80, 81]. Notonecta maculata has already been shown to
influence oviposition by three mosquitoes species including
An. gambiae s.l. [13], and the predator-released kairomone(s)
may have the same effects in all three mosquito species.
The chemicals which may be common to all backswimmers
species [77], but not to other predator groups [90], elicit the
response in some mosquitoes. Future studies should focus
on determining the specific volatile compound(s) released by
predators that reduce malaria vector oviposition, particularly
An. gambiae s.l., which may then be used in control efforts
[80].

2.6. Microbial Volatiles. Microbial populations in breeding
sites produce volatiles that serve as semiochemicals for
gravid An. gambiae. These signals, in conjunction with
other (nonolfactory) chemical and physical cues, may be
used by the female to assess the suitability of potential
larval habitats in order to maximize the fitness of her
offspring. Microbes and their metabolites act as ovipositional
attractants and/or stimulants for various species of culicine
mosquitoes [22, 23, 91–93]. Microbial metabolites emanating
from larval habitats might also positively influence ovipo-
sitional site selection by anopheline mosquitoes. Indirect
lines of evidence have shown that water microbial condition
significantly affected oviposition as a substrate preference
of anopheline mosquitoes. Knols et al. [17] reported that
An. gambiae Giles laid more eggs on nonautoclaved soil or
water taken from natural larval habitats than on similar but
autoclaved materials, suggesting that killing the microbes by
autoclaving eliminated the source of ovipositional attractants.
In a laboratory experiment, lake water drawn from Lake
Victoria attracted more eggs by An. gambiae than did any
water or infusion type, including water from puddle habitats
supporting larvae that are thought to be ideal larval habitat.
The author speculated that algal volatiles [94, 95] might play
some role in ovipositional stimulation on this type of water
[49]. Blackwell and Johnson [96] observed significant elec-
troantennogram (EAG) responses of An. gambiae towards
volatile components of water samples from Tanzanian breed-
ing sites. The origin of stimulants in mosquito breeding sites
and their mode of action towards gravid females are not
fully understood, though it has been suggestively linked to
microbial activity [9, 15, 35, 36, 97].

Previous studies have shown that microbial volatiles
function as oviposition attractants/stimulants to different
mosquito species. Bacteria in larval habitats may serve as a
direct source of food for the larvae or as modifiers of organic
matter in breedingwaters, whichmay give rise to constituents
ingested by larvae as well as volatile organic compounds of
the breeding site waters [25, 96, 98–100]. Certain bacterial
volatiles have been shown to attract Cx. fatigans Coquillet
[97],Ae. aegypti L. [92], andCx. quinquefasciatus Say [18, 93].
In certain cases, bacterial metabolites [97] were thought to
be precursors in the synthesis of the volatile attractants. A
lower oviposition response was reported after reduction of
the number of bacteria either by sterilization, filtering, or
addition of antibiotics to the test water or substrate [21, 35, 36,
91]. Indeed, some studies have reported a direct oviposition
response toward bacterial cultures or filtrates [16, 23, 92,
93, 97, 101–103]. The majority of these studies have been
performed on Culex or Aedes mosquitoes. For anopheline
mosquitoes, Sumba et al. [21] observed an indirect effect
of bacteria on oviposition response of Anopheles gambiae
Giles by comparing soil and water from natural habitats with
the same substrate that had been sterilized. The mosquitoes
laid significantly more eggs on the nonsterile substrates [21].
Material from larval habitats of Anopheles albimanusWiede-
mann and Anopheles vestitipennisDyar and Knab (consisting
of macrophytes, cyanobacteria, diatoms, and bacteria), when
extracted by freeze-drying and presented to gravid females at
low concentrations, increased oviposition by females of both
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species [100]. Direct evidence has found that emissions from
a bacterial flora isolated from a larval habitat of An. gambiae
received significantly fewer eggs than controls, indicating
that these emissions under the unnatural conditions were
repellent rather than attractive to the gravid females [16,
65, 104]. This bacterial flora included mixtures of bacterial
colonies of Pseudomonas strains (78%), Stenotrophomonas,
Enterobacter, Pantoea, Klebsiella, Acinetobacter, Aeromonas,
and Bacillus or a lawn of colonies of a field isolate of S.
maltophilia. Oviposition was neither reduced nor enhanced
when field isolates of Pseudomonas putida or Pseudomonas
alcaligenes colonies were presented in the habitat. These
results suggest that gravid An. gambiae females are sensitive
to bacteria-derived odors emanating, as has been suggested
for host-seeking females [15], from cultured bacteria from
natural larval habitats and that some bacterial odors may be
repellent [16]. Recently, 13 putative oviposition attractants for
An. gambiae mosquitoes were identified from six bacteria,
previously isolated from Anopheles gambiae s.l. (Diptera:
Culicidae)midguts or oviposition sites, subjected to principal
component analysis (PCA) based on the relative amounts of
volatiles emitted and among these putative, the 3-methyl-1-
butanol has been found to be a strong candidate [105]. Further
research is needed to confirm these observations. If any of the
suggested compounds is confirmed as oviposition attractants,
they may be used in traps to monitor or in combination with
larvicides to control An. gambiae populations.

Bond et al. [106] provided direct evidence for attraction
of gravid Anopheles pseudopunctipennis Theobald to sub-
strates containing filamentous algae. Torres-Estrada et al. [68]
investigated the attraction of An. pseudopunctipennis gravid
females to oviposition substrates containing Spirogyramajus-
cula algae under laboratory conditions. This experiment has
been done based on the well-documented association of
filamentous algae with larval abundance [26]. The authors
found that gravid females deposited significantly more eggs
in cups containing natural algae in water from breeding sites
than in cups containing artificial (nylon rope) life-like algae
in water from the corresponding natural breeding site or
in cups containing natural algae in distilled water. Results
from bioassays carried out in the same study with Spirogyra
majuscula organic extracts indicated that these extracts at
concentrations of 0.1%, 0.01%, and 0.001% attracted more
oviposition, but concentrations of 1%, 10%, and 100% were
repellent. Gas chromatography andmass spectrometry analy-
sis of algal organic extracts revealed amixture of ethyl acetate
and hydrocarbons compounds. These results suggested that
the attraction of gravid An. pseudopunctipennis to natural
breeding sites containing filamentous algae is probably medi-
ated by organic volatiles released by the algae [26].

3. Conclusion

Chemical volatiles influence oviposition site selection as
attractants or stimulants. Control tools could be therefore
designed to capitalize on the attractant or stimulant prop-
erties of semiochemicals influencing malaria vectors ovipo-
sition responses in the field. The isolation of determinants

for oviposition behaviors in anopheline mosquitoes still
remained elusive. Efforts for isolating anopheline oviposition
pheromones level have been unsuccessful, probably due to
small quantity produced by the immature stages making
the study of their structure and function more difficult.
This review suggests early investigations which indicates
the potential of plant, algae, or bacteria-derived oviposition
attractants and stimulants, which could be used to lure
females mosquitoes to lethal ovitraps to increase their expo-
sure to insecticide-impregnated substrates [68, 105].
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I. Arredondo-Jimenez, “Selective oviposition by Aedes aegypti
(Diptera: Culicidae) in response to Mesocyclops longisetus
(Copepoda: Cyclopoidea) under laboratory and field condi-
tions,” Journal of Medical Entomology, vol. 38, no. 2, pp. 188–192,
2001.



Journal of Insects 7

[39] P. J. McCall and M. M. Cameron, “Oviposition pheromones in
insect vectors,” Parasitology Today, vol. 11, no. 9, pp. 352–355,
1995.

[40] S. A.Allan andD. L. Kline, “Larval rearingwater and preexisting
eggs influence oviposition by Aedes aegypti and Ae. albopictus
(Diptera: Culicidae),” Journal ofMedical Entomology, vol. 35, no.
6, pp. 943–947, 1998.

[41] L. Blaustein and B. P. Kotler, “Oviposition habitat selection
by the mosquito, Culiseta longiareolata: effects of conspecifics,
food and green toad tadpoles,” Ecological Entomology, vol. 18,
no. 2, pp. 104–108, 1993.

[42] B.Doligez, C. Cadet, E.Danchin, andT. Boulinier, “When to use
public information for breeding habitat selection? The role of
environmental predictability and density dependence,” Animal
Behaviour, vol. 66, no. 5, pp. 973–988, 2003.

[43] J. A. Stamps, “Conspecific attraction and aggregation in terri-
torial species,” American Naturalist, vol. 131, no. 3, pp. 329–347,
1988.

[44] J. Stamps, R. McElreath, and P. Eason, “Alternative models of
conspecific attraction in flies and crabs,”Behavioral Ecology, vol.
16, no. 6, pp. 974–980, 2005.

[45] J. K. Young and J. A. Shivik, “What carnivore biologists can
learn from bugs, birds, and beavers: a review of spatial theories,”
Canadian Journal of Zoology, vol. 84, no. 12, pp. 1703–1711, 2006.

[46] S. B. Heard, “Imperfect oviposition decisions by the pitcher
plant mosquito (Wyeomyia smithii),” Evolutionary Ecology, vol.
8, no. 5, pp. 493–502, 1994.

[47] J. Wong, S. T. Stoddard, H. Astete, A. C. Morrison, and T. W.
Scott, “Oviposition site selection by the dengue vector Aedes
aegypti and its implications for dengue control,” PLoS Neglected
Tropical Diseases, vol. 5, no. 4, Article ID e1015, 2011.

[48] E. J. Kweka, G. Zhou, M.-C. Lee et al., “Evaluation of two
methods of estimating larval habitat productivity in western
Kenya highlands,” Parasites and Vectors, vol. 4, no. 1, article 110,
2011.

[49] P. E. Otienoburu, N. Bayoh, J. Gimnig et al., “Anopheles gambiae
(Diptera: Culicidae) oviposition as influenced by type of water
infused into black and red soils of western Kenya,” International
Journal of Tropical Insect Science, vol. 27, no. 1, pp. 2–5, 2007.

[50] K. S. P. Kalpage and R. A. Brust, “Oviposition attractant
produced by immature Aedes atropa/pus,” Environmental Ento-
mology, vol. 2, pp. 729–730, 1973.

[51] A. Maire, “Effect of axenic larvae on the oviposition site
selection byAedes atropalpus,” Journal of the AmericanMosquito
Control Association, vol. 1, no. 3, pp. 320–323, 1985.

[52] P. Schneider, W. Takken, and P. J. McCall, “Interspecific compe-
tition between sibling species larvae ofAnopheles arabiensis and
An. gambiae,”Medical and Veterinary Entomology, vol. 14, no. 2,
pp. 165–170, 2000.

[53] L. P. Lounibos, N. Nishimura, J. Conn, and R. Lourenço-de-
Oliveira, “Life history correlates of adult size in the malaria
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