51 research outputs found

    The c-kit Ligand, Stem Cell Factor, Can Enhance Innate Immunity Through Effects on Mast Cells

    Get PDF
    Mast cells are thought to contribute significantly to the pathology and mortality associated with anaphylaxis and other allergic disorders. However, studies using genetically mast cell–deficient WBB6F1-KitW/KitW-v and congenic wild-type (WBB6F1-+/+) mice indicate that mast cells can also promote health, by participating in natural immune responses to bacterial infection. We previously reported that repetitive administration of the c-kit ligand, stem cell factor (SCF), can increase mast cell numbers in normal mice in vivo. In vitro studies have indicated that SCF can also modulate mast cell effector function. We now report that treatment with SCF can significantly improve the survival of normal C57BL/6 mice in a model of acute bacterial peritonitis, cecal ligation and puncture (CLP). Experiments in mast cell–reconstituted WBB6F1-KitW/KitW-v mice indicate that this effect of SCF treatment reflects, at least in part, the actions of SCF on mast cells. Repetitive administration of SCF also can enhance survival in mice that genetically lack tumor necrosis factor (TNF)-α, demonstrating that the ability of SCF treatment to improve survival after CLP does not solely reflect effects of SCF on mast cell– dependent (or –independent) production of TNF-α. These findings identify c-kit and mast cells as potential therapeutic targets for enhancing innate immune responses

    Global Precipitation Measurement Cold Season Precipitation Experiment (GCPEx): For Measurement Sake Let it Snow

    Get PDF
    As a component of the Earth's hydrologic cycle, and especially at higher latitudes,falling snow creates snow pack accumulation that in turn provides a large proportion of the fresh water resources required by many communities throughout the world. To assess the relationships between remotely sensed snow measurements with in situ measurements, a winter field project, termed the Global Precipitation Measurement (GPM) mission Cold Season Precipitation Experiment (GCPEx), was carried out in the winter of 2011-2012 in Ontario, Canada. Its goal was to provide information on the precipitation microphysics and processes associated with cold season precipitation to support GPM snowfall retrieval algorithms that make use of a dual-frequency precipitation radar and a passive microwave imager on board the GPM core satellite,and radiometers on constellation member satellites. Multi-parameter methods are required to be able to relate changes in the microphysical character of the snow to measureable parameters from which precipitation detection and estimation can be based. The data collection strategy was coordinated, stacked, high-altitude and in-situ cloud aircraft missions with three research aircraft sampling within a broader surface network of five ground sites taking in-situ and volumetric observations. During the field campaign 25 events were identified and classified according to their varied precipitation type, synoptic context, and precipitation amount. Herein, the GCPEx fieldcampaign is described and three illustrative cases detailed

    Breast cancer prognostic classification in the molecular era: the role of histological grade

    Get PDF
    Breast cancer is a heterogeneous disease with varied morphological appearances, molecular features, behavior, and response to therapy. Current routine clinical management of breast cancer relies on the availability of robust clinical and pathological prognostic and predictive factors to support clinical and patient decision making in which potentially suitable treatment options are increasingly available. One of the best-established prognostic factors in breast cancer is histological grade, which represents the morphological assessment of tumor biological characteristics and has been shown to be able to generate important information related to the clinical behavior of breast cancers. Genome-wide microarray-based expression profiling studies have unraveled several characteristics of breast cancer biology and have provided further evidence that the biological features captured by histological grade are important in determining tumor behavior. Also, expression profiling studies have generated clinically useful data that have significantly improved our understanding of the biology of breast cancer, and these studies are undergoing evaluation as improved prognostic and predictive tools in clinical practice. Clinical acceptance of these molecular assays will require them to be more than expensive surrogates of established traditional factors such as histological grade. It is essential that they provide additional prognostic or predictive information above and beyond that offered by current parameters. Here, we present an analysis of the validity of histological grade as a prognostic factor and a consensus view on the significance of histological grade and its role in breast cancer classification and staging systems in this era of emerging clinical use of molecular classifiers. © 2010 BioMed Central Lt

    Development and validation of a targeted gene sequencing panel for application to disparate cancers

    Get PDF
    Next generation sequencing has revolutionised genomic studies of cancer, having facilitated the development of precision oncology treatments based on a tumour’s molecular profile. We aimed to develop a targeted gene sequencing panel for application to disparate cancer types with particular focus on tumours of the head and neck, plus test for utility in liquid biopsy. The final panel designed through Roche/Nimblegen combined 451 cancer-associated genes (2.01 Mb target region). 136 patient DNA samples were collected for performance and application testing. Panel sensitivity and precision were measured using well-characterised DNA controls (n = 47), and specificity by Sanger sequencing of the Aryl Hydrocarbon Receptor Interacting Protein (AIP) gene in 89 patients. Assessment of liquid biopsy application employed a pool of synthetic circulating tumour DNA (ctDNA). Library preparation and sequencing were conducted on Illumina-based platforms prior to analysis with our accredited (ISO15189) bioinformatics pipeline. We achieved a mean coverage of 395x, with sensitivity and specificity of >99% and precision of >97%. Liquid biopsy revealed detection to 1.25% variant allele frequency. Application to head and neck tumours/cancers resulted in detection of mutations aligned to published databases. In conclusion, we have developed an analytically-validated panel for application to cancers of disparate types with utility in liquid biopsy

    The FANCM:p.Arg658* truncating variant is associated with risk of triple-negative breast cancer

    Get PDF
    Abstract: Breast cancer is a common disease partially caused by genetic risk factors. Germline pathogenic variants in DNA repair genes BRCA1, BRCA2, PALB2, ATM, and CHEK2 are associated with breast cancer risk. FANCM, which encodes for a DNA translocase, has been proposed as a breast cancer predisposition gene, with greater effects for the ER-negative and triple-negative breast cancer (TNBC) subtypes. We tested the three recurrent protein-truncating variants FANCM:p.Arg658*, p.Gln1701*, and p.Arg1931* for association with breast cancer risk in 67,112 cases, 53,766 controls, and 26,662 carriers of pathogenic variants of BRCA1 or BRCA2. These three variants were also studied functionally by measuring survival and chromosome fragility in FANCM−/− patient-derived immortalized fibroblasts treated with diepoxybutane or olaparib. We observed that FANCM:p.Arg658* was associated with increased risk of ER-negative disease and TNBC (OR = 2.44, P = 0.034 and OR = 3.79; P = 0.009, respectively). In a country-restricted analysis, we confirmed the associations detected for FANCM:p.Arg658* and found that also FANCM:p.Arg1931* was associated with ER-negative breast cancer risk (OR = 1.96; P = 0.006). The functional results indicated that all three variants were deleterious affecting cell survival and chromosome stability with FANCM:p.Arg658* causing more severe phenotypes. In conclusion, we confirmed that the two rare FANCM deleterious variants p.Arg658* and p.Arg1931* are risk factors for ER-negative and TNBC subtypes. Overall our data suggest that the effect of truncating variants on breast cancer risk may depend on their position in the gene. Cell sensitivity to olaparib exposure, identifies a possible therapeutic option to treat FANCM-associated tumors

    Advances and applications in low-power phased array X-band weather radars

    No full text
    Low-cost, low-power X-band phased array radar (LPAR) is an enabling technology for future deployment of distributed short-range radar networks. Such networks offer the potential for superior and lower altitude surveillance of atmospheric and airborne events compared with today's larger, long range national radar networks. Two dimensionally steered (phase-phase steering, without motors or other moving parts) phased array radars are complex systems comprising multiple subsystems including several thousand transmit/receive (T/R) channels, beam steering computers, thermal management. Owing to this complexity and the associated cost, phased array technology has not historically been used in weather and air traffic control radars. Competition for the frequency spectrum traditionally reserved for long-range radars is motivating the search for new approaches to national air surveillance; this has motivated R&D investment in two-dimensional X-band LPAR over the past decade, to the point where prototype systems are now emerging in several application settings including, for the first time, the university research setting. Two-dimensional high-speed (inertia-less) beam steering combined with dual polarization, programmable/adaptive waveforms, and the ability to combine multiple radars into networks is leading to new atmospheric science research opportunities related to hazardous storm forecasting and response, understanding cloud physics, water resource management, monitoring the movement and dispersal of hazardous plumes, and other areas
    • …
    corecore