1,639 research outputs found

    Measuring the speed of the conscious components of recognition memory: Remembering is faster than knowing.

    Get PDF
    Three experiments investigated response times (RTs) for remember and know responses in recognition memory. RTs to remember responses were faster than RTs to know responses, regardless of whether the remember–know decision was preceded by an old/new decision (two-step procedure) or was made without a preceding old/new decision (one-step procedure). The finding of faster RTs for R responses was also found when remember–know decisions were made retrospectively. These findings are inconsistent with dual-process models of recognition memory, which predict that recollection is slower and more effortful than familiarity. Word frequency did not influence RTs, but remember responses were faster for words than for nonwords. We argue that the difference in RTs to remember and know responses reflects the time taken to make old/new decisions on the basis of the type of information activated at test

    Changes in Diet and Body Condition of Lake Whitefish in Southern Lake Michigan Associated with Changes in Benthos

    Get PDF
    We evaluated the long‐term trends of the benthic macroinvertebrate community (1980–1999) and biological attributes of lake whitefish Coregonus clupeaformis (1985–1999) in southeastern Lake Michigan. We also determined what food types were important to lake whitefish in an area where the amphipod Diporeia had not yet declined in 1998 and how the diet of lake whitefish changed as Diporeia declined during 1999–2000. Zebra mussels Dreissena polymorpha invaded the study area in 1992; Diporeia began to decline in 1993 and was nearly absent by 1999. The body condition of lake whitefish decreased after 1993 and remained low thereafter. The length at age and weight at age of lake whitefish was lower in 1992–1999 than in 1985–1991. After declines of Diporeia off the city of Muskegon, Michigan, between 1998 and 1999–2000, the proportion of Diporeia in the diet by weight fell from 70% to 25% and the percent occurrence decreased from 81% to 45%. In contrast, the proportion of lake whitefish that ate other prey, such as Mysis relicta (an opossum shrimp), ostracods, oligochaetes, and zooplankton, increased in the same period. At sites south of Muskegon, where the density of Diporeia has been low since 1998, chironomids, zebra mussels, and fingernail clams (Shaeriidae family) were the most important diet items of lake whitefish. Decreases in body condition and growth are associated with the loss of the high‐energy prey resource Diporeia, the consumption of prey with lower energy content, such as zebra mussels, and possible density‐dependence. Commercial harvests of lake whitefish will probably decrease because of low body condition and growth. Future management may require changes in harvest quotas, size restrictions, and depth restrictions as zebra mussel‐related impacts spread northward in Lake Michigan.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/142050/1/nafm0876.pd

    A Computational Model of Quantitative Chromatin Immunoprecipitation (ChIP) Analysis

    Get PDF
    Chromatin immunoprecipitation (ChIP) analysis is widely used to identify the locations in genomes occupied by transcription factors (TFs). The approach involves chemical cross-linking of DNA with associated proteins, fragmentation of chromatin by sonication or enzymatic digestion, immunoprecipitation of the fragments containing the protein of interest, and then PCR or hybridization analysis to characterize and quantify the genomic sequences enriched. We developed a computational model of quantitative ChIP analysis to elucidate the factors contributing to the method’s resolution. The most important variables identified by the model were, in order of importance, the spacing of the PCR primers, the mean length of the chromatin fragments, and, unexpectedly, the type of fragment width distribution, with very small DNA fragments and smaller amplicons providing the best resolution of TF binding. One of the major predictions of the model was also validated experimentally

    Donor origin of circulating endothelial progenitors after allogeneic bone marrow transplantation

    Get PDF
    AbstractEndothelial cell precursors circulate in blood and express antigens found on hematopoietic stem cells, suggesting that such precursors might be subject to transplantation. To investigate, we obtained adherence-depleted peripheral blood mononuclear cells from 3 individuals who had received a sex-mismatched allogeneic bone marrow transplant (BMT) and cultured the cells on fibronectin-coated plates with endothelial growth factors. The phenotype of the spindle-shaped cells that emerged in culture was characterized by immunofluorescent staining, and the origin of the cells was determined using a polymerase chain reaction (PCR)-based assay for polymorphic short tandem repeats (STRs). The cells manifested a number of endothelial characteristics-such as von Wlllebrand factor, CD31, and Flk-1/KDR expression; Bandeiraea simplicifolia lectin 1 binding; and acetylated low-density lipoprotein uptake-but lacked expression of certain markers of activation or differentiation, including intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and the epitope for the anti-endothelial cell antibody P1H12. For each patient and at all time points studied (ranging from 5 to 52 months after transplantation), STR-PCR analysis showed that cultured cells and nucleated blood cells came exclusively from the bone marrow donor. These results demonstrate that circulating endothelial progenitors are both transplantable and capable of long-term repopulation of human allogeneic BMT recipients.Biol Blood Marrow Transplant 2000;6(3A):301-8

    Effects of Hypoxia on Consumption, Growth, and RNA:DNA Ratios of Young Yellow Perch

    Full text link
    As in various freshwater and coastal marine ecosystems worldwide, seasonal bottom water hypoxia is a recurring phenomenon in Lake Erie’s central basin. While bottom hypoxia can strongly affect sessile benthic animals, its effects on mobile organisms such as fish are less understood. We evaluated the potential for bottom hypoxia to affect the growth rates of yellow perch Perca flavescens, a species of ecological and economic importance in the lake. To this end, we (1) conducted laboratory experiments to quantify the effects of reduced dissolved oxygen on consumption, somatic growth, and RNA : DNA ratios (an index of short‐term growth) of young yellow perch and (2) explored the effects of bottom hypoxia on young yellow perch growth in Lake Erie’s central basin by collecting individuals in hypoxicand normoxic regions of the lake and quantifying their RNA : DNA ratios. Yellow perch consumption and growth in our experiments declined under hypoxic conditions (≤2 mg O2/L). While yellow perch RNA : DNA ratios responded strongly to experimental temperature, nucleic acid ratios were not significantly affected by dissolved oxygen or feeding ration. We did, however, observe a positive correlation between yellow perch growth and RNA : DNA ratios at low temperatures (11°C). The nucleic acid ratios of yellow perch collected in Lake Erie varied spatiotemporally, but their patterns were not consistent with hypoxia. In short, while yellow perch consumption and growth rates respond directly and negatively to low oxygen conditions, these responses are not necessarily reflected in RNA : DNA ratios. Moreover, in central Lake Erie, where yellow perch can behaviorally avoid hypoxic areas, the RNA : DNA ratios of yellow perch do not respond strongly to bottom hypoxia. Thus, this study suggests that there is no strong negative effect of bottom hypoxia on the growth of young yellow perch in Lake Erie.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/141858/1/tafs1574.pd

    Edge Tunneling of Vortices in Superconducting Thin Films

    Full text link
    We investigate the phenomenon of the decay of a supercurrent due to the zero-temperature quantum tunneling of vortices from the edge in a thin superconducting film in the absence of an external magnetic field. An explicit formula is derived for the tunneling rate of vortices, which are subject to the Magnus force induced by the supercurrent, through the Coulomb-like potential barrier binding them to the film's edge. Our approach ensues from the non-relativistic version of a Schwinger-type calculation for the decay of the 2D vacuum previously employed for describing vortex-antivortex pair-nucleation in the bulk of the sample. In the dissipation-dominated limit, our explicit edge-tunneling formula yields numerical estimates which are compared with those obtained for bulk-nucleation to show that both mechanisms are possible for the decay of a supercurrent.Comment: REVTeX file, 15 pages, 1 Postscript figure; to appear in Phys.Rev.

    IGR J17254-3257, a new bursting neutron star

    Full text link
    The study of the observational properties of uncommonly long bursts from low luminosity sources with extended decay times up to several tens of minutes is important when investigating the transition from a hydrogen-rich bursting regime to a pure helium regime and from helium burning to carbon burning as predicted by current burst theories. IGR J17254-3257 is a recently discovered X-ray burster of which only two bursts have been recorded: an ordinary short type I X-ray burst, and a 15 min long burst. An upper limit to its distance is estimated to about 14.5 kpc. The broad-band spectrum of the persistent emission in the 0.3-100 keV energy band obtained using contemporaneous INTEGRAL and XMM-Newton data indicates a bolometric flux of 1.1x10^-10 erg/cm2/s corresponding, at the canonical distance of 8 kpc, to a luminosity about 8.4x10^35 erg/s between 0.1-100 keV, which translates to a mean accretion rate of about 7x10^-11 solar masses per year. The low X-ray persistent luminosity of IGR J17254-3257 seems to indicate the source may be in a state of low accretion rate usually associated with a hard spectrum in the X-ray range. The nuclear burning regime may be intermediate between pure He and mixed H/He burning. The long burst is the result of the accumulation of a thick He layer, while the short one is a prematurate H-triggered He burning burst at a slightly lower accretion rate.Comment: 4 pages, 4 figures, 1 table; accepted for publication in A&A Letters. 1 reference (Cooper & Narayan, 2007) correcte

    Interactive Effects of Hypoxia and Temperature on Coastal Pelagic Zooplankton and Fish

    Get PDF
    Hypoxia, triggered in large part by eutrophication, exerts widespread and expanding stress on coastal ecosystems. Hypoxia is often specifically defined as water having dissolved oxygen (DO) concentrations < 2 mg L−1. However, DO concentration alone is insufficient to categorize hypoxic stress or predict impacts of hypoxia on zooplankton and fish. Hypoxic stress depends on the oxygen supply relative to metabolic demand. Water temperature controls both oxygen solubility and the metabolic demand of aquatic ectotherms. Accordingly, to assess impacts of hypoxia requires consideration of effects of temperature on both oxygen availability and animal metabolism. Temperature differences across ecosystems or across seasons or years within an ecosystem can dramatically impact the severity of hypoxia even at similar DO concentrations. Living under sub-optimum DO can reduce temperature-dependent metabolic efficiencies, prey capture efficiency, growth and reproductive potential, thus impacting production and individual zooplankton and fish fitness. Avoidance of hypoxic bottom water can reduce or eliminate low-temperature thermal refuges for organisms and increase energy demands and respiration rates, and potentially reduce overall fitness if alternative habitats are sub-optimal. Moreover, differential habitat shifts among species can shift predator-prey abundance ratios or interactions and thus modify food webs. For example, more tolerant zooplankton prey may use hypoxic waters as a refuge from fish predation. In contrast, zooplankton avoidance of hypoxic bottom waters can result in prey aggregations at oxyclines sought out by fish predators. Hypoxic conditions that affect spatial ecology can drive taxonomic and size shifts in the zooplankton community, affecting foraging, consumption and growth of fish. Advances in understanding the ecological effects of low DO waters on pelagic zooplankton and fish and comparisons among ecosystems will require development of generic models that estimate the oxygen demand of organisms in relation to oxygen supply which depends on both DO and temperature. We provide preliminary analysis of a metric (Oxygen Stress Level) which integrates oxygen demand in relation to oxygen availability for a coastal copepod and compare the prediction of oxygen stress to actual copepod distributions in areas with hypoxic bottom waters

    Lake Erie hypoxia prompts Canada‐U.S. study

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/95631/1/eost15589.pd
    corecore