56 research outputs found
Lagrangian Descriptors: A Method for Revealing Phase Space Structures of General Time Dependent Dynamical Systems
In this paper we develop new techniques for revealing geometrical structures
in phase space that are valid for aperiodically time dependent dynamical
systems, which we refer to as Lagrangian descriptors. These quantities are
based on the integration, for a finite time, along trajectories of an intrinsic
bounded, positive geometrical and/or physical property of the trajectory
itself. We discuss a general methodology for constructing Lagrangian
descriptors, and we discuss a "heuristic argument" that explains why this
method is successful for revealing geometrical structures in the phase space of
a dynamical system. We support this argument by explicit calculations on a
benchmark problem having a hyperbolic fixed point with stable and unstable
manifolds that are known analytically. Several other benchmark examples are
considered that allow us the assess the performance of Lagrangian descriptors
in revealing invariant tori and regions of shear. Throughout the paper
"side-by-side" comparisons of the performance of Lagrangian descriptors with
both finite time Lyapunov exponents (FTLEs) and finite time averages of certain
components of the vector field ("time averages") are carried out and discussed.
In all cases Lagrangian descriptors are shown to be both more accurate and
computationally efficient than these methods. We also perform computations for
an explicitly three dimensional, aperiodically time-dependent vector field and
an aperiodically time dependent vector field defined as a data set. Comparisons
with FTLEs and time averages for these examples are also carried out, with
similar conclusions as for the benchmark examples.Comment: 52 pages, 25 figure
BBF RFC 105: The Intein standard - a universal way to modify proteins after translation
This Request for Comments (RFC) proposes a new standard that allows for easy and flexible cloning of intein constructs and thus makes this technology accessible to the synthetic biology community
Patient reported preferences for sleep interventions among women receiving buprenorphine for opioid use disorder
AimAmong individuals receiving medication for OUD (MOUD), insomnia is highly prevalent and increases the risk for negative OUD outcomes. However, little is known about MOUD patient-reported preferences for insomnia treatments among women with OUD. This mixed-methods study explored acceptability of and patient preferences for sleep interventions among women in OUD treatment.MethodsThis is an analysis from an ongoing cross-sectional survey and interview study investigating the relationship between sleep and OUD recovery. The parent study is actively enrolling non-pregnant women between 18–45 years stabilized on buprenorphine from an outpatient program. Participants complete measures including the Insomnia Severity Index (ISI), with scores of ≥10 identifying clinically significant insomnia symptoms. A sub-sample who met this threshold completed semi-structured interviews. Descriptive statistics were generated for survey responses, and applied thematic analysis was used for interview data.ResultsParticipants selected for the qualitative interview (n = 11) highlighted prior positive and negative experiences with sleep treatments, challenges with employing non-pharmacological sleep strategies, and preferences for both medical and behavioral sleep interventions while in recovery. Women emphasized the need for flexibility of sleep therapy sessions to align with ongoing social determinants (e.g., caregiving responsibilities) as well as for sleep medications without sedating effects nor risk of dependency.ConclusionsMany women receiving MOUD have concomitant insomnia symptoms, and desire availability of both pharmacologic and behavioral sleep interventions within the OUD treatment setting. Qualitative findings underscore the need for evidence-based sleep interventions that account for the unique socioenvironmental factors that may impact strategy implementation in this population
Combined point of care nucleic acid and antibody testing for SARS-CoV-2 following emergence of D614G Spike Variant
Rapid COVID-19 diagnosis in hospital is essential, though complicated by 30-50% of nose/throat swabs being negative by SARS-CoV-2 nucleic acid amplification testing (NAAT). Furthermore, the D614G spike mutant now dominates the pandemic and it is unclear how serological tests designed to detect anti-Spike antibodies perform against this variant. We assess the diagnostic accuracy of combined rapid antibody point of care (POC) and nucleic acid assays for suspected COVID-19 disease due to either wild type or the D614G spike mutant SARS-CoV-2. The overall detection rate for COVID-19 is 79.2% (95CI 57.8-92.9%) by rapid NAAT alone. Combined point of care antibody test and rapid NAAT is not impacted by D614G and results in very high sensitivity for COVID-19 diagnosis with very high specificity
Longitudinal analysis reveals that delayed bystander CD8+ T cell activation and early immune pathology distinguish severe COVID-19 from mild disease.
The kinetics of the immune changes in COVID-19 across severity groups have not been rigorously
assessed. Using immunophenotyping, RNA sequencing and serum cytokine analysis, we analyzed
serial samples from 207 SARS-CoV2-infected individuals with a range of disease severities over 12
weeks from symptom onset. An early robust bystander CD8+ T cell immune response, without
systemic inflammation, characterized asymptomatic or mild disease. Hospitalized individuals had
delayed bystander responses and systemic inflammation that was already evident near symptom
onset, indicating that immunopathology may be inevitable in some individuals. Viral load did not
correlate with this early pathological response, but did correlate with subsequent disease severity.
Immune recovery is complex, with profound persistent cellular abnormalities in severe disease
correlating with altered inflammatory responses, with signatures associated with increased oxidative
phosphorylation replacing those driven by cytokines tumor necrosis factor (TNF) and interleukin (IL)-
6. These late immunometabolic and immune defects may have clinical implication
Recommended from our members
Screening of healthcare workers for SARS-CoV-2 highlights the role of asymptomatic carriage in COVID-19 transmission
Funder: Addenbrooke's Charitable Trust, Cambridge University Hospitals; FundRef: http://dx.doi.org/10.13039/501100002927Significant differences exist in the availability of healthcare worker (HCW) SARS-CoV-2 testing between countries, and existing programmes focus on screening symptomatic rather than asymptomatic staff. Over a 3 week period (April 2020), 1032 asymptomatic HCWs were screened for SARS-CoV-2 in a large UK teaching hospital. Symptomatic staff and symptomatic household contacts were additionally tested. Real-time RT-PCR was used to detect viral RNA from a throat+nose self-swab. 3% of HCWs in the asymptomatic screening group tested positive for SARS-CoV-2. 17/30 (57%) were truly asymptomatic/pauci-symptomatic. 12/30 (40%) had experienced symptoms compatible with coronavirus disease 2019 (COVID-19)>7 days prior to testing, most self-isolating, returning well. Clusters of HCW infection were discovered on two independent wards. Viral genome sequencing showed that the majority of HCWs had the dominant lineage B∙1. Our data demonstrates the utility of comprehensive screening of HCWs with minimal or no symptoms. This approach will be critical for protecting patients and hospital staff
Recommended from our members
Age-related immune response heterogeneity to SARS-CoV-2 vaccine BNT162b2
Abstract: Although two-dose mRNA vaccination provides excellent protection against SARS-CoV-2, there is little information about vaccine efficacy against variants of concern (VOC) in individuals above eighty years of age1. Here we analysed immune responses following vaccination with the BNT162b2 mRNA vaccine2 in elderly participants and younger healthcare workers. Serum neutralization and levels of binding IgG or IgA after the first vaccine dose were lower in older individuals, with a marked drop in participants over eighty years old. Sera from participants above eighty showed lower neutralization potency against the B.1.1.7 (Alpha), B.1.351 (Beta) and P.1. (Gamma) VOC than against the wild-type virus and were more likely to lack any neutralization against VOC following the first dose. However, following the second dose, neutralization against VOC was detectable regardless of age. The frequency of SARS-CoV-2 spike-specific memory B cells was higher in elderly responders (whose serum showed neutralization activity) than in non-responders after the first dose. Elderly participants showed a clear reduction in somatic hypermutation of class-switched cells. The production of interferon-γ and interleukin-2 by SARS-CoV-2 spike-specific T cells was lower in older participants, and both cytokines were secreted primarily by CD4 T cells. We conclude that the elderly are a high-risk population and that specific measures to boost vaccine responses in this population are warranted, particularly where variants of concern are circulating
Complement lectin pathway activation is associated with COVID-19 disease severity, independent of MBL2 genotype subgroups
IntroductionWhile complement is a contributor to disease severity in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, all three complement pathways might be activated by the virus. Lectin pathway activation occurs through different pattern recognition molecules, including mannan binding lectin (MBL), a protein shown to interact with SARS-CoV-2 proteins. However, the exact role of lectin pathway activation and its key pattern recognition molecule MBL in COVID-19 is still not fully understood.MethodsWe therefore investigated activation of the lectin pathway in two independent cohorts of SARS-CoV-2 infected patients, while also analysing MBL protein levels and potential effects of the six major single nucleotide polymorphisms (SNPs) found in the MBL2 gene on COVID-19 severity and outcome.ResultsWe show that the lectin pathway is activated in acute COVID-19, indicated by the correlation between complement activation product levels of the MASP-1/C1-INH complex (p=0.0011) and C4d (p<0.0001) and COVID-19 severity. Despite this, genetic variations in MBL2 are not associated with susceptibility to SARS-CoV-2 infection or disease outcomes such as mortality and the development of Long COVID.ConclusionIn conclusion, activation of the MBL-LP only plays a minor role in COVID-19 pathogenesis, since no clinically meaningful, consistent associations with disease outcomes were noted
SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion
Abstract: The B.1.617.2 (Delta) variant of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first identified in the state of Maharashtra in late 2020 and spread throughout India, outcompeting pre-existing lineages including B.1.617.1 (Kappa) and B.1.1.7 (Alpha)1. In vitro, B.1.617.2 is sixfold less sensitive to serum neutralizing antibodies from recovered individuals, and eightfold less sensitive to vaccine-elicited antibodies, compared with wild-type Wuhan-1 bearing D614G. Serum neutralizing titres against B.1.617.2 were lower in ChAdOx1 vaccinees than in BNT162b2 vaccinees. B.1.617.2 spike pseudotyped viruses exhibited compromised sensitivity to monoclonal antibodies to the receptor-binding domain and the amino-terminal domain. B.1.617.2 demonstrated higher replication efficiency than B.1.1.7 in both airway organoid and human airway epithelial systems, associated with B.1.617.2 spike being in a predominantly cleaved state compared with B.1.1.7 spike. The B.1.617.2 spike protein was able to mediate highly efficient syncytium formation that was less sensitive to inhibition by neutralizing antibody, compared with that of wild-type spike. We also observed that B.1.617.2 had higher replication and spike-mediated entry than B.1.617.1, potentially explaining the B.1.617.2 dominance. In an analysis of more than 130 SARS-CoV-2-infected health care workers across three centres in India during a period of mixed lineage circulation, we observed reduced ChAdOx1 vaccine effectiveness against B.1.617.2 relative to non-B.1.617.2, with the caveat of possible residual confounding. Compromised vaccine efficacy against the highly fit and immune-evasive B.1.617.2 Delta variant warrants continued infection control measures in the post-vaccination era
Recommended from our members
Single-cell multi-omics analysis of the immune response in COVID-19
Funder: Lister Institute of Preventive Medicine; doi: https://doi.org/10.13039/501100001255Funder: University College London, Birkbeck MRC Doctoral Training ProgrammeFunder: The Jikei University School of MedicineFunder: Action Medical Research (GN2779)Funder: NIHR Clinical Lectureship (CL-2017-01-004)Funder: NIHR (ACF-2018-01-004) and the BMA FoundationFunder: Chan Zuckerberg Initiative (grant 2017-174169) and from Wellcome (WT211276/Z/18/Z and Sanger core grant WT206194)Funder: UKRI Innovation/Rutherford Fund Fellowship allocated by the MRC and the UK Regenerative Medicine Platform (MR/5005579/1 to M.Z.N.). M.Z.N. and K.B.M. have been funded by the Rosetrees Trust (M944)Funder: Barbour FoundationFunder: ERC Consolidator and EU MRG-Grammar awardsFunder: Versus Arthritis Cure Challenge Research Grant (21777), and an NIHR Research Professorship (RP-2017-08-ST2-002)Funder: European Molecular Biology Laboratory (EMBL)Abstract: Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy
- …