403 research outputs found

    Equilibrium Binding Model for CpG DNA-Dependent Dimerization of Toll-like Receptor 9 Ectodomain.

    Get PDF
    Microbial nucleic acids in the extracellular milieu are recognized in vertebrates by Toll-like receptors (TLRs), one of the most important families of innate immune receptors. TLR9 recognizes single-stranded unmethylated CpG DNA in endosomes. DNA binding induces TLR9 dimerization and activation of a potent inflammatory response. To provide insights on how DNA ligands induce TLR9 dimerization, we developed a detailed theoretical framework for equilibrium ligand binding, modeling the binding of the ssDNA at the two main sites on the TLR9 ectodomain. Light scattering and fluorescence anisotropy assays performed with recombinant TLR9 ectodomain and a panel of agonistic and antagonistic DNA ligands provide data that restrain the binding parameters, identify the likely ligand binding intermediates, and suggest cooperative modes of binding. This work brings us one step closer to establishing a rigorous biochemical understanding of how TLRs are activated by their ligands.This work was supported by: -US NIH grant R01-GM102869 -Wellcome Trust Senior Research Fellowships 101908/Z/13/Z and 217191/Z/19/Z to Y.M

    Crystal structure of the Z-ring associated cell division protein ZapC from Escherichia coli

    Get PDF
    AbstractBacterial cell division involves a contractile ring that organises downstream proteins at the division site and which contains the tubulin homologue FtsZ. ZapC has been discovered as a non-essential regulator of FtsZ. It localises to the septal ring and deletion of zapC leads to a mild phenotype, while overexpression inhibits cell division. Interference with cell division is facilitated by an interaction with FtsZ. Here, we present the 2.9Ã… crystal structure of ZapC from Escherichia coli. ZapC forms a dimer and comprises two domains that belong to the Royal superfamily of which many members bind methylated arginines or lysines. ZapC contains an N-terminal chromo-like domain and a Tudor-like C-terminal domain. We show by ITC that ZapC binds the C-terminal tail of FtsZ

    Discovery of the X-ray Counterpart to the Rotating Radio Transient J1819--1458

    Get PDF
    We present the discovery of the first X-ray counterpart to a Rotating RAdio Transient (RRAT) source. RRAT J1819--1458 is a relatively highly magnetized (B ∼5×1013\sim 5\times10^{13} G) member of a new class of unusual pulsar-like objects discovered by their bursting activity at radio wavelengths. The position of RRAT J1819--1458 was serendipitously observed by the {\sl Chandra} ACIS-I camera in 2005 May. At that position we have discovered a pointlike source, CXOU J181934.1--145804, with a soft spectrum well fit by an absorbed blackbody with NH=7−4+7×1021N_H = 7^{+7}_{-4} \times 10^{21} cm−2^{-2} and temperature kT=0.12±0.04kT=0.12 \pm 0.04 keV, having an unabsorbed flux of ∼2×10−12\sim2 \times 10^{-12} ergs cm−2^{-2} s−1^{-1} between 0.5 and 8 keV. No optical or infrared (IR) counterparts are visible within 1′′1'' of our X-ray position. The positional coincidence, spectral properties, and lack of an optical/IR counterpart make it highly likely that CXOU J181934.1--145804 is a neutron star and is the same object as RRAT J1819--1458. The source showed no variability on any timescale from the pulse period of 4.26~s up to the five-day window covered by the observations, although our limits (especially for pulsations) are not particularly constraining. The X-ray properties of CXOU J181934.1--145804, while not yet measured to high precision, are similar to those of comparably-aged radio pulsars and are consistent with thermal emission from a cooling neutron star

    A low-complexity region in the YTH domain protein Mmi1 enhances RNA binding

    Get PDF
    Mmi1 is an essential RNA-binding protein in the fission yeast Schizosaccharomyces pombe that eliminates meiotic transcripts during normal vegetative growth. Mmi1 contains a YTH domain that binds specific RNA sequences, targeting mRNAs for degradation. The YTH domain of Mmi1 uses a noncanonical RNA-binding surface that includes contacts outside the conserved fold. Here, we report that an N-terminal extension that is proximal to the YTH domain enhances RNA binding. Using X-ray crystallography, NMR, and biophysical methods, we show that this low-complexity region becomes more ordered upon RNA binding. This enhances the affinity of the interaction of the Mmi1 YTH domain with specific RNAs by reducing the dissociation rate of the Mmi1-RNA complex. We propose that the low-complexity region influences RNA binding indirectly by reducing dynamic motions of the RNA-binding groove and stabilizing a conformation of the YTH domain that binds to RNA with high affinity. Taken together, our work reveals how a low-complexity region proximal to a conserved folded domain can adopt an ordered structure to aid nucleic acid binding
    • …
    corecore