Equilibrium Binding Model for CpG DNA-Dependent Dimerization of Toll-like Receptor 9 Ectodomain.

Abstract

Microbial nucleic acids in the extracellular milieu are recognized in vertebrates by Toll-like receptors (TLRs), one of the most important families of innate immune receptors. TLR9 recognizes single-stranded unmethylated CpG DNA in endosomes. DNA binding induces TLR9 dimerization and activation of a potent inflammatory response. To provide insights on how DNA ligands induce TLR9 dimerization, we developed a detailed theoretical framework for equilibrium ligand binding, modeling the binding of the ssDNA at the two main sites on the TLR9 ectodomain. Light scattering and fluorescence anisotropy assays performed with recombinant TLR9 ectodomain and a panel of agonistic and antagonistic DNA ligands provide data that restrain the binding parameters, identify the likely ligand binding intermediates, and suggest cooperative modes of binding. This work brings us one step closer to establishing a rigorous biochemical understanding of how TLRs are activated by their ligands.This work was supported by: -US NIH grant R01-GM102869 -Wellcome Trust Senior Research Fellowships 101908/Z/13/Z and 217191/Z/19/Z to Y.M

    Similar works