757 research outputs found

    Pleckstrin Homology Domain 1 of Mouse R1-Syntrophin Binds Phosphatidylinositol 4,5-Bisphosphate †

    Get PDF
    ABSTRACT: Mouse R1-syntrophin sequences were produced as chimeric fusion proteins in bacteria and found to bind phosphatidylinositol 4,5-bisphosphate (PtdIns4,5P 2 ). Half-maximal binding occurred at 1.9 ”M PtdIns4,5P 2 and when 1.2 PtdIns4,5P 2 were added per syntrophin. Binding was specific for PtdIns4,5P 2 and did not occur with six other tested lipids including the similar phosphatidylinositol 4-phosphate. Binding was localized to the N-terminal pleckstrin homology domain (PH1); the second, C-terminal PH2 domain did not bind lipids. Key residues in PtdIns4,5P 2 binding to a PH domain were found to be conserved in R-syntrophins' PH1 domains and absent in PH2 domains, suggesting a molecular basis for binding

    Laminin and α-Dystroglycan Mediate Acetylcholine Receptor Aggregation via a MuSK-Independent Pathway

    Get PDF
    Specific isoforms of laminin (LN) are concentrated at neuromuscular junctions (NMJs) where they may participate in synaptic organization or function. In myotubes from C2 cells, LN is concentrated within the majority of spontaneous acetylcholine receptor (AChR) aggregates. Neural agrin substantially increases this colocalization, suggesting that agrin can recruit LN into AChR aggregates. Addition of LN to C2 myotubes induces a more than twofold increase in the number of AChR aggregates. These aggregates have a larger size and are more dense than are those induced by agrin, suggesting that LN is involved in the growth and/or stabilization of AChR aggregates. Consistent with this hypothesis, an antiserum to LN reduces the size of individual AChR aggregates but increases their number. In C2 myotubes, extracellular matrix receptors containing the integrin beta1 subunit are poorly colocalized with AChR aggregates, suggesting that integrins may not be involved in LN-induced aggregation. In contrast, almost all AChR aggregates are associated with dystroglycan immunoreactivity, and monoclonal antibody (mAb) IIH6 against alpha-dystroglycan (alpha-DG), a LN and agrin receptor, causes a concentration-dependent inhibition of LN-induced aggregation. Moreover, S27 cells, which lack a functional alpha-DG, and two C2-derived cell lines expressing antisense DG mRNA fail to aggregate AChRs in response to LN. Finally, LN-induced AChR aggregation does not involve the phosphorylation of the muscle-specific tyrosine kinase receptor (MuSK) or the AChR beta subunit. We hypothesize that the interaction of LN with alpha-DG contributes to the growth and/or stabilization of AChR microaggregates into macroaggregates at the developing NMJ via a MuSK-independent mechanism

    Interaction of Muscle and Brain Sodium Channels with Multiple Members of the Syntrophin Family of Dystrophin-Associated Proteins

    Get PDF
    Syntrophins are cytoplasmic peripheral membrane proteins of the dystrophin-associated protein complex (DAPC). Three syntrophin isoforms, alpha1, beta1, and beta2, are encoded by distinct genes. Each contains two pleckstrin homology (PH) domains, a syntrophin-unique (SU) domain, and a PDZ domain. The name PDZ comes from the first three proteins found to contain repeats of this domain (PSD-95, Drosophila discs large protein, and the zona occludens protein 1). PDZ domains in other proteins bind to the C termini of ion channels and neurotransmitter receptors containing the consensus sequence (S/T)XV-COOH and mediate the clustering or synaptic localization of these proteins. Two voltage-gated sodium channels (NaChs), SkM1 and SkM2, of skeletal and cardiac muscle, respectively, have this consensus sequence. Because NaChs are sarcolemmal components like syntrophins, we have investigated possible interactions between these proteins. NaChs copurify with syntrophin and dystrophin from extracts of skeletal and cardiac muscle. Peptides corresponding to the C-terminal 10 amino acids of SkM1 and SkM2 are sufficient to bind detergent-solubilized muscle syntrophins, to inhibit the binding of native NaChs to syntrophin PDZ domain fusion proteins, and to bind specifically to PDZ domains from alpha1-, beta1-, and beta2-syntrophin. These peptides also inhibit binding of the syntrophin PDZ domain to the PDZ domain of neuronal nitric oxide synthase, an interaction that is not mediated by C-terminal sequences. Brain NaChs, which lack the (S/T)XV consensus sequence, also copurify with syntrophin and dystrophin, an interaction that does not appear to be mediated by the PDZ domain of syntrophin. Collectively, our data suggest that syntrophins link NaChs to the actin cytoskeleton and the extracellular matrix via dystrophin and the DAPC

    Cyclic Peptides as Non-carboxyl-terminal Ligands of Syntrophin PDZ Domains

    Get PDF
    Syntrophins, a family of intracellular peripheral membrane proteins of the dystrophin-associated protein complex (DAPC), each contain a single PDZ domain. Syntrophin PDZ domains bind C-terminal peptide sequences with the consensus R/K-E-S/T-X-V-COOH, an interaction that mediates association of skeletal muscle sodium channels with the DAPC. Here, we have isolated cyclic peptide ligands for syntrophin PDZ domains from a library of combinatorial peptides displayed at the N terminus of protein III of bacteriophage M13. Affinity selection from a library of X10C peptides yielded ligands with the consensus X-(R/K)-E-T-C-L/M-A-G-X-Psi-C, where Psi represents any hydrophobic amino acid. These peptides contain residues (underlined) similar to the C-terminal consensus sequence for binding to syntrophin PDZ domains and bind to the same site on syntrophin PDZ domains as C-terminal peptides, but do not bind to other closely related PDZ domains. PDZ binding is dependent on the formation of an intramolecular disulfide bond in the peptides, since treatment with dithiothreitol, or substitution of either of the two cysteines with alanines, eliminated this activity. Furthermore, amino acid replacements revealed that most residues in the phage-selected peptides are required for binding. Our results define a new mode of binding to PDZ domains and suggest that proteins containing similar conformationally constrained sequences may be ligands for PDZ domains

    Antigen Identification for Orphan T Cell Receptors Expressed on Tumor-Infiltrating Lymphocytes

    Get PDF
    The immune system can mount T cell responses against tumors; however, the antigen specificities of tumor-infiltrating lymphocytes (TILs) are not well understood. We used yeast-display libraries of peptide-human leukocyte antigen (pHLA) to screen for antigens of “orphan” T cell receptors (TCRs) expressed on TILs from human colorectal adenocarcinoma. Four TIL-derived TCRs exhibited strong selection for peptides presented in a highly diverse pHLA-A∗02:01 library. Three of the TIL TCRs were specific for non-mutated self-antigens, two of which were present in separate patient tumors, and shared specificity for a non-mutated self-antigen derived from U2AF2. These results show that the exposed recognition surface of MHC-bound peptides accessible to the TCR contains sufficient structural information to enable the reconstruction of sequences of peptide targets for pathogenic TCRs of unknown specificity. This finding underscores the surprising specificity of TCRs for their cognate antigens and enables the facile identification of tumor antigens through unbiased screening

    Anti-oestrogens but not oestrogen deprivation promote cellular invasion in intercellular adhesion-deficient breast cancer cells

    Get PDF
    Introduction Anti-oestrogens have been the mainstay of therapy in patients with oestrogen-receptor (ER) positive breast cancer and have provided significant improvements in survival. However, their benefits are limited by tumour recurrence in a significant proportion of initially drug-responsive breast cancer patients because of acquired anti-oestrogen resistance. Relapse on such therapies clinically presents as local and/or regional recurrences, frequently with distant metastases, and the prognosis for these patients is poor. The selective ER modulator, tamoxifen, classically exerts gene inhibitory effects during the drug-responsive phase in ER-positive breast cancer cells. Paradoxically, this drug is also able to induce the expression of genes, which in the appropriate cell context may contribute to an adverse cell phenotype. Here we have investigated the effects of tamoxifen and fulvestrant treatment on invasive signalling and compared this with the direct effects of oestrogen withdrawal to mimic the action of aromatase inhibitors. Methods The effect of oestrogen and 4-hydroxy-tamoxifen on the invasive capacity of endocrine-sensitive MCF-7 cells, in the presence or absence of functional E-cadherin, was determined by Matrigel invasion assays. Studies also monitored the impact of oestrogen withdrawal or treatment with fulvestrant on cell invasion. Western blotting using phospho-specific antibodies was performed to ascertain changes in invasive signalling in response to the two anti-oestrogens versus both oestradiol treatment and withdrawal. Results To the best of our knowledge, we report for the first time that tamoxifen can promote an invasive phenotype in ER-positive breast cancer cells under conditions of poor cell-cell contact and suggest a role for Src kinase and associated pro-invasive genes in this process. Our studies revealed that although this adverse effect is also apparent for further classes of anti-oestrogens, exemplified by the steroidal agent fulvestrant, it is absent during oestrogen withdrawal. Conclusions These data highlight a previously unreported effect of tamoxifen (and potentially further anti-oestrogens), that such agents appear able to induce breast cancer cell invasion in a specific context (absence of good cell-cell contacts), where these findings may have major clinical implications for those patients with tumours that have inherently poor intercellular adhesion. In such patients oestrogen deprivation with aromatase inhibitors may be more appropriate

    LSST Science Book, Version 2.0

    Get PDF
    A survey that can cover the sky in optical bands over wide fields to faint magnitudes with a fast cadence will enable many of the exciting science opportunities of the next decade. The Large Synoptic Survey Telescope (LSST) will have an effective aperture of 6.7 meters and an imaging camera with field of view of 9.6 deg^2, and will be devoted to a ten-year imaging survey over 20,000 deg^2 south of +15 deg. Each pointing will be imaged 2000 times with fifteen second exposures in six broad bands from 0.35 to 1.1 microns, to a total point-source depth of r~27.5. The LSST Science Book describes the basic parameters of the LSST hardware, software, and observing plans. The book discusses educational and outreach opportunities, then goes on to describe a broad range of science that LSST will revolutionize: mapping the inner and outer Solar System, stellar populations in the Milky Way and nearby galaxies, the structure of the Milky Way disk and halo and other objects in the Local Volume, transient and variable objects both at low and high redshift, and the properties of normal and active galaxies at low and high redshift. It then turns to far-field cosmological topics, exploring properties of supernovae to z~1, strong and weak lensing, the large-scale distribution of galaxies and baryon oscillations, and how these different probes may be combined to constrain cosmological models and the physics of dark energy.Comment: 596 pages. Also available at full resolution at http://www.lsst.org/lsst/sciboo

    LSST: from Science Drivers to Reference Design and Anticipated Data Products

    Get PDF
    (Abridged) We describe here the most ambitious survey currently planned in the optical, the Large Synoptic Survey Telescope (LSST). A vast array of science will be enabled by a single wide-deep-fast sky survey, and LSST will have unique survey capability in the faint time domain. The LSST design is driven by four main science themes: probing dark energy and dark matter, taking an inventory of the Solar System, exploring the transient optical sky, and mapping the Milky Way. LSST will be a wide-field ground-based system sited at Cerro Pach\'{o}n in northern Chile. The telescope will have an 8.4 m (6.5 m effective) primary mirror, a 9.6 deg2^2 field of view, and a 3.2 Gigapixel camera. The standard observing sequence will consist of pairs of 15-second exposures in a given field, with two such visits in each pointing in a given night. With these repeats, the LSST system is capable of imaging about 10,000 square degrees of sky in a single filter in three nights. The typical 5σ\sigma point-source depth in a single visit in rr will be ∌24.5\sim 24.5 (AB). The project is in the construction phase and will begin regular survey operations by 2022. The survey area will be contained within 30,000 deg2^2 with ÎŽ<+34.5∘\delta<+34.5^\circ, and will be imaged multiple times in six bands, ugrizyugrizy, covering the wavelength range 320--1050 nm. About 90\% of the observing time will be devoted to a deep-wide-fast survey mode which will uniformly observe a 18,000 deg2^2 region about 800 times (summed over all six bands) during the anticipated 10 years of operations, and yield a coadded map to r∌27.5r\sim27.5. The remaining 10\% of the observing time will be allocated to projects such as a Very Deep and Fast time domain survey. The goal is to make LSST data products, including a relational database of about 32 trillion observations of 40 billion objects, available to the public and scientists around the world.Comment: 57 pages, 32 color figures, version with high-resolution figures available from https://www.lsst.org/overvie
    • 

    corecore